Then
In Chapter 1, you classified polygons. You recognized and applied properties of polygons.

Now
In Chapter 6, you will:
- Find and use the sum of the measures of the interior and exterior angles of a polygon.
- Recognize and apply properties of quadrilaterals.
- Compare quadrilaterals.

Why?
FUN AND GAMES The properties of quadrilaterals can be used to find various angle measures and side lengths such as the measures angles in game equipment, playing fields, and game boards.

KY Program of Studies
HS-G-S-SR7 Students will classify, determine attributes of, analyze and apply properties of two-dimensional geometric figures.
HS-G-S-CG7 Students will investigate conjectures and solve problems involving two-dimensional figures.

Math in Motion Animation glencoe.com
Find each measure. (Lesson 4-2)

1. \(m\angle 1 \)
 \[x = 85^\circ + 65^\circ \]

2. \(m\angle 2 \)
 \[4x^\circ = 29^\circ \]

SPEED SKATING A speed skater forms at least two sets of triangles and exterior angles as she skates. Find each measure.

3. \(m\angle 1 \)
 \[m\angle 1 = 65^\circ + 47^\circ \]

4. \(m\angle 2 \)
 \[180 = m\angle 2 + 68^\circ + 65^\circ \]

5. \(m\angle 3 \)
 \[180 = m\angle 2 + 133 \]

6. \(m\angle 4 \)
 \[m\angle 2 = 47^\circ \]

EXAMPLE 2

ALGEBRA Find \(x \) and the measures of the unknown sides of each triangle. (Lesson 4-3)

7. \(WX = 9x \)
 \[6x + 3 = 4x + 5 \]

8. \(FG = 9x - 6 \)
 \[7x + 4 = 17 \]

9. **TRAVEL** A plane travels from Des Moines to Phoenix, on to Atlanta, and back to Des Moines, as shown below. Find the distance in miles from Des Moines to Phoenix if the total trip was 3482 miles.

EXAMPLE 2

ALGEBRA Find the measures of the sides of isosceles \(\triangle XYZ \).

\[XY = YZ \]
\[2x + 3 = 4x - 1 \]
\[-2x = -4 \]
\[x = 2 \]

\[XY = 2x + 3 \]
\[= 2(2) + 3 \text{ or } 7 \]

\[YZ = XY \]
\[= 7 \]

\[XZ = 8x - 4 \]
\[= 8(2) - 4 \text{ or } 12 \]

\[x = 2 \]
Get Started on Chapter 6

You will learn several new concepts, skills, and vocabulary terms as you study Chapter 6. To get ready, identify important terms and organize your resources. You may wish to refer to Chapter 0 to review prerequisite skills.

Foldables Study Organizer

Quadrilaterals Make this Foldable to help you organize your Chapter 6 notes about quadrilaterals. Begin with one sheet of notebook paper.

1. **Fold** lengthwise to the holes.
2. **Fold** along the width of the paper twice and unfold the paper.
3. **Cut** along the fold marks on the left side of the paper.
4. **Label** as shown.

New Vocabulary

<table>
<thead>
<tr>
<th>English</th>
<th>Español</th>
</tr>
</thead>
<tbody>
<tr>
<td>diagonal</td>
<td>diagonal</td>
</tr>
<tr>
<td>parallelogram</td>
<td>paralelogram</td>
</tr>
<tr>
<td>rectangle</td>
<td>rectángulo</td>
</tr>
<tr>
<td>rhombus</td>
<td>rombo</td>
</tr>
<tr>
<td>square</td>
<td>cuadrado</td>
</tr>
<tr>
<td>trapezoid</td>
<td>trapecio</td>
</tr>
<tr>
<td>base</td>
<td>base</td>
</tr>
<tr>
<td>legs</td>
<td>catetos</td>
</tr>
<tr>
<td>isosceles trapezoid</td>
<td>rapecio isósceles</td>
</tr>
<tr>
<td>midsegment of a trapezoid</td>
<td>paralela media de un trapecio</td>
</tr>
</tbody>
</table>

Review Vocabulary

- **exterior angle** • p. 246 • ángulo externo an angle formed by one side of a triangle and the extension of another side
- **remote interior angle** • p. 246 • ángulos internos no adyacentes the angles of a triangle that are not adjacent to a given exterior angle
- **slope** • p. 186 • pendiente for a (nonvertical) line containing two points \((x_1, y_1)\) and \((x_2, y_2)\), the number \(m\) given by the formula \(m = \frac{y_2 - y_1}{x_2 - x_1}\) where \(x_2 \neq x_1\)

KY Math Online glencoe.com

- Study the chapter online
- Explore Math in Motion
- Get extra help from your own Personal Tutor
- Use Extra Examples for additional help
- Take a Self-Check Quiz
- Review Vocabulary in fun ways
Angles of Polygons

Why?

To create their honeycombs, young worker honeybees excrete flecks of wax that are carefully molded by other bees to form hexagonal cells. The cells are less than 0.1 millimeter thick, but they support almost 25 times their own weight. The cell walls all stand at exactly the same angle to one another. This angle is the measure of the interior angle of a regular hexagon.

Polygon Interior Angles Sum

A diagonal of a polygon is a segment that connects any two nonconsecutive vertices.

The vertices of polygon PQRST that are not consecutive with vertex P are vertices R and S. Therefore, polygon PQRST has two diagonals from vertex P: PR and PS. Notice that the diagonals from vertex P separate the hexagon into three triangles.

The sum of the angle measures of a polygon is the sum of the angle measures of the triangles formed by drawing all the possible diagonals from one vertex.

Since the sum of the angle measures of a triangle is 180, we can make a table and look for a pattern to find the sum of the angle measures for any convex polygon.

<table>
<thead>
<tr>
<th>Polygon</th>
<th>Number of Sides</th>
<th>Number of Triangles</th>
<th>Sum of Interior Angle Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangle</td>
<td>3</td>
<td>1</td>
<td>(1)180 or 180</td>
</tr>
<tr>
<td>Quadrilateral</td>
<td>4</td>
<td>2</td>
<td>(2)180 or 360</td>
</tr>
<tr>
<td>Pentagon</td>
<td>5</td>
<td>3</td>
<td>(3)180 or 540</td>
</tr>
<tr>
<td>Hexagon</td>
<td>6</td>
<td>4</td>
<td>(4)180 or 720</td>
</tr>
<tr>
<td>n-gon</td>
<td>n</td>
<td>n − 2</td>
<td>(n − 2)180</td>
</tr>
</tbody>
</table>

This leads to the following theorem.

Theorem 6.1 Polygon Interior Angles Sum

The sum of the interior angle measures of an n-sided convex polygon is \((n − 2) \cdot 180\).

Example

\[m \angle A + m \angle B + m \angle C + m \angle D + m \angle E = (5 − 2) \cdot 180\]

\[= 540\]
You can use the Polygon Interior Angles Sum Theorem to find the sum of the interior angles of a polygon and to find missing measures in polygons.

EXAMPLE 1 Find the Interior Angles Sum of a Polygon

a. Find the sum of the measures of the interior angles of a convex heptagon.

A heptagon has seven sides. Use the Polygon Interior Angles Sum Theorem to find the sum of its interior angle measures.

\[
(n - 2) \cdot 180 = (7 - 2) \cdot 180 \quad n = 7
\]

\[
= 5 \cdot 180 \text{ or } 900 \quad \text{Simplify.}
\]

The sum of the measures is 900.

CHECK Draw a convex polygon with seven sides. Use a protractor to measure each angle to the nearest degree. Then find the sum of these measures.

\[
128 + 145 + 140 + 87 + 134 + 136 + 130 = 900 \checkmark
\]

b. ALGEBRA Find the measure of each interior angle of quadrilateral ABCD.

Step 1 Find \(x\).

Since there are 4 angles, the sum of the interior angle measures is \((4 - 2) \cdot 180 \text{ or } 360.\)

\[
360 = m\angle A + m\angle B + m\angle C + m\angle D
\]

\[
360 = 3x + 90 + 90 + x
\]

\[
360 = 4x + 180
\]

\[
180 = 4x
\]

\[
45 = x
\]

Step 2 Use the value of \(x\) to find the measure of each angle.

\[
m\angle A = 3x \quad m\angle B = 90 \quad m\angle D = x
\]

\[
= 3(45) \text{ or } 135 \quad m\angle C = 90 = 45
\]

Check Your Progress

1A. Find the sum of the measures of the interior angles of a convex octagon.

1B. Find the measure of each interior angle of pentagon HJKLM shown.

Recall from Lesson 1-6 that in a regular polygon, all of the interior angles are congruent. You can use this fact and the Polygon Interior Angle Sum Theorem to find the interior angle measure of any regular polygon.
EXAMPLE 2 Interior Angle Measure of Regular Polygon

TENTS The poles for a tent form the vertices of a regular hexagon. When the poles are properly positioned, what is the measure of the angle formed at a corner of the tent?

Understand Draw a diagram of the situation.

The measure of the angle formed at a corner of the tent is an interior angle of a regular hexagon.

Plan Use the Polygon Interior Angles Sum Theorem to find the sum of the measures of the angles. Since the angles of a regular polygon are congruent, divide this sum by the number of angles to find the measure of each interior angle.

Solve Step 1 Find the sum of the interior angle measures.

\[
(n - 2) \cdot 180 = (6 - 2) \cdot 180 = 4 \cdot 180 \text{ or } 720
\]

Step 2 Find the measure of one interior angle.

\[
\frac{\text{sum of interior angle measures}}{\text{number of congruent angles}} = \frac{720}{6} = 120 \quad \text{Substitution}
\]

The angle at a corner of the tent measures 120.

Check To verify that this measure is correct, use a ruler and a protractor to draw a regular hexagon using 120 as the measure of each interior angle. The last side drawn should connect with the beginning point of the first segment drawn. ✓

Check Your Progress

2A. COINS Find the measure of each interior angle of the regular 11-gon that appears on the face of a Susan B. Anthony one-dollar coin.

2B. HOT TUBS A certain company makes hot tubs in a variety of different shapes. Find the measure of each interior angle of the nonagon model.

Given the interior angle measure of a regular polygon, you can also use the Polygon Interior Angles Sum Theorem to find a polygon’s number of sides.
EXAMPLE 3 Find Number of Sides Given Interior Angle Measure

The measure of an interior angle of a regular polygon is 135. Find the number of sides in the polygon.

Let \(n \) = the number of sides in the polygon. Since all angles of a regular polygon are congruent, the sum of the interior angle measures is 135\(n \). By the Polygon Interior Angles Sum Theorem, the sum of the interior angle measures can also be expressed as \((n - 2) \cdot 180\).

\[
135n = (n - 2) \cdot 180 \quad \text{Write an equation.}
\]

\[
135n = 180n - 360 \quad \text{Distributive Property}
\]

\[
-45n = -360 \quad \text{Subtract } 180n \text{ from each side.}
\]

\[
n = 8 \quad \text{Divide each side by } -45.
\]

The polygon has 8 sides.

Check Your Progress

3. The measure of an interior angle of a regular polygon is 144. Find the number of sides in the polygon.

Polygon Exterior Angles Sum Does a relationship exist between the number of sides of a convex polygon and the sum of its exterior angle measures? Examine the polygons below in which an exterior angle has been measured at each vertex.

\[
120 + 100 + 140 = 360
\]

\[
105 + 110 + 105 + 40 = 360
\]

\[
65 + 98 + 36 + 50 + 111 = 360
\]

Notice that the sum of the exterior angle measures in each case is 360. This suggests the following theorem.

Theorem 6.2 Polygon Exterior Angles Sum

The sum of the exterior angle measures of a convex polygon, one angle at each vertex, is 360.

Example

\[
m\angle 1 + m\angle 2 + m\angle 3 + m\angle 4 + m\angle 5 + m\angle 6 = 360
\]

You will prove Theorem 6.2 in Exercise 43.
EXAMPLE 4 Find Exterior Angle Measures of a Polygon

a. **ALGEBRA** Find the value of \(x \) in the diagram.

 Use the Polygon Exterior Angles Sum Theorem to write an equation. Then solve for \(x \).

 \[
 (2x - 5) + 5x + 2x + (6x - 5) + (3x + 10) = 360

 (2x + 5x + 2x + 6x + 3x) + [-5 + (-5) + 10] = 360

 18x = 360

 x = \frac{360}{18} \text{ or } 20
 \]

b. Find the measure of each exterior angle of a regular nonagon.

 A regular nonagon has 9 congruent sides and 9 congruent interior angles. The exterior angles are also congruent, since angles supplementary to congruent angles are congruent. Let \(n \) = the measure of each exterior angle and write and solve an equation.

 \[
 9n = 360 \quad \text{Polygon Exterior Angles Sum Theorem}

 n = 40 \quad \text{Divide each side by 9.}
 \]

 The measure of each exterior angle of a regular nonagon is 40.

Check Your Progress

4A. Find the value of \(x \) in the diagram.

4B. Find the measure of each exterior angle of a regular dodecagon.

Check Your Understanding

Example 1 p. 390

Find the sum of the measures of the interior angles of each convex polygon.

1. decagon

Find the measure of each interior angle.

3. \[\begin{array}{ccc}
X & 2x & Y \\
3x & & 4x \\
W & & Z
\end{array} \]

4. \[\begin{array}{ccc}
A & (x + 2)^\circ & B \\
(x - 4)^\circ & & (x + 7)^\circ \\
F & & C \\
E & (x + 6)^\circ & D \\
& (x - 3)^\circ &
\end{array} \]

Example 2 p. 391

5 **AMUSEMENT** The Wonder Wheel at Coney Island in Brooklyn, New York, is a regular polygon with 16 sides. What is the measure of each interior angle of the polygon?

Example 3 p. 392

The measure of an interior angle of a regular polygon is given. Find the number of sides in the polygon.

6. 150

7. 170

Lesson 6-1 Angles of Polygons 393
Find the value of x in each diagram.

8. \[52^\circ + 2x^\circ = 88^\circ \]

9. \[79^\circ + (x + 10)^\circ = 2x^\circ \]

Find the measure of each exterior angle of each regular polygon.

10. quadrilateral

11. octagon

Practice and Problem Solving

Find the sum of the measures of the interior angles of each convex polygon.

12. dodecagon

13. 20-gon

14. 29-gon

15. 32-gon

Find the measure of each interior angle.

16.

\[
\begin{align*}
Q & \quad (2x + 5)^\circ \\
R & \quad (2x + 7)^\circ \\
S & \quad x^\circ \\
T & \quad x^\circ \\
\end{align*}
\]

17.

\[
\begin{align*}
J & \quad (3x - 6)^\circ \\
K & \quad (x + 10)^\circ \\
L & \quad x^\circ \\
M & \quad (2x - 8)^\circ \\
\end{align*}
\]

18.

\[
\begin{align*}
A & \quad (2x + 10)^\circ \\
B & \quad (2x - 20)^\circ \\
C & \quad x^\circ \\
D & \quad x^\circ \\
E & \quad x^\circ \\
\end{align*}
\]

19.

\[
\begin{align*}
U & \quad (x - 8)^\circ \\
V & \quad (3x - 11)^\circ \\
W & \quad (x + 8)^\circ \\
X & \quad (2x + 7)^\circ \\
Y & \quad x^\circ \\
\end{align*}
\]

20. **BASEBALL** In baseball, home plate is a pentagon. The dimensions of home plate are shown. What is the sum of the measures of the interior angles of home plate?

Find the measure of each interior angle of each regular polygon.

21. dodecagon

22. pentagon

23. decagon

24. nonagon

25. **GAMES** Hexagonal chess is played on a regular hexagonal board comprised of 92 small hexagons in three colors. The chess pieces are arranged so that a player can move any piece at the start of a game.

 a. What is the sum of the measures of the interior angles of the chess board?

 b. Does each interior angle have the same measure? If so, give the measure. Explain your reasoning.

Example 3

The measure of an interior angle of a regular polygon is given. Find the number of sides in the polygon.

26. 60

27. 90

28. 120

29. 156
Lesson 6-1 Angles of Polygons

Find the value of x in each diagram.

30. \((x - 11)^\circ\) \(31^\circ\) \((x + 10)^\circ\)

31. \((x - 10)^\circ\) \(21^\circ\) \((x + 14)^\circ\)

32. \((3x + 2)^\circ\) \(2x\) \((x + 5)^\circ\)

33. \(2x\) \((x + 18)^\circ\) \((x + 10)^\circ\)

Find the measure of each exterior angle of each regular polygon.

34. decagon 35. pentagon 36. hexagon 37. 15-gon

38. COLOR GUARD During the halftime performance for a football game, the color guard is planning a new formation in which seven members stand around a central point and stretch their flag to the person immediately to their left as shown.

a. What is the measure of each exterior angle of the formation?

b. If the perimeter of the formation is 38.5 feet, how long is each flag?

Find the measures of an exterior angle and an interior angle given the number of sides of each regular polygon. Round to the nearest tenth, if necessary.

39. 7 40. 13 41. 14

42. PROOF Write a paragraph proof to prove the Polygon Interior Angles Sum Theorem for octagons.

43. PROOF Use algebra to prove the Polygon Exterior Angle Sum Theorem.

44. PHOTOGRAPHY The aperture on the camera lens shown is a regular 14-sided polygon.

a. What is the measure of each interior angle of the polygon?

b. What is the measure of each exterior angle of the polygon?

ALGEBRA Find the measure of each interior angle.

45. decagon, in which the measures of the interior angles are \(x + 5, x + 10, x + 20, x + 30, x + 35, x + 40, x + 60, x + 70, x + 80, \) and \(x + 90\)

46. polygon \(ABCDE,\) in which the measures of the interior angles are \(6x, 4x + 13, x + 9, 2x - 8, 4x - 1\)
Theater in the round is staged so that the acting area is completely surrounded by the audience. The concept originated in ancient Greek theater.

Source: Encyclopaedia Britannica

47. **THEATER** The drama club would like to build a theater in the round for its next production.

a. The stage is to be a regular octagon with a total perimeter of 60 feet. To what length should each board be cut to form the sides of the stage?

b. At what angle should each board be cut so that they will fit together as shown? Explain your reasoning.

48. **MULTIPLE REPRESENTATIONS** In this problem, you will explore angle and side relationships in special quadrilaterals.

a. **GEOMETRIC** Draw two pairs of parallel lines that intersect like the ones shown. Label the quadrilateral formed by $ABCD$. Repeat these steps to form two additional quadrilaterals, $FGHJ$ and $QRST$.

b. **TABULAR** Copy and complete the table below.

<table>
<thead>
<tr>
<th>Quadrilateral</th>
<th>$\angle A$</th>
<th>$\angle B$</th>
<th>$\angle C$</th>
<th>$\angle D$</th>
<th>$\angle F$</th>
<th>$\angle G$</th>
<th>$\angle H$</th>
<th>$\angle J$</th>
<th>$\angle Q$</th>
<th>$\angle R$</th>
<th>$\angle S$</th>
<th>$\angle T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ABCD$</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td></td>
</tr>
<tr>
<td>$FGHJ$</td>
<td></td>
</tr>
<tr>
<td>FG</td>
<td></td>
</tr>
<tr>
<td>$QRST$</td>
<td></td>
</tr>
<tr>
<td>$QRST$</td>
<td></td>
</tr>
<tr>
<td>QR</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td></td>
</tr>
<tr>
<td>TQ</td>
<td></td>
</tr>
</tbody>
</table>
54. If the polygon shown is regular, what is $m\angle ABC$?
 A 140
 B 144
 C 162
 D 180

55. SHORT RESPONSE Figure $ABCDE$ is a regular pentagon with line ℓ passing through side AE. What is $m\angle y$?

56. ALGEBRA $\frac{3^2 \cdot 4^5 \cdot 5^3}{5^3 \cdot 3^3 \cdot 4^6} = $
 F $\frac{1}{60}$
 G $\frac{1}{12}$
 H $\frac{3}{4}$
 J 12

57. SAT/ACT The sum of the measures of the interior angles of a polygon is twice the sum of the measures of its exterior angles. What type of polygon is it?
 A square
 B pentagon
 C hexagon
 D octagon

Spiral Review

Compare the given measures. (Lesson 5-6)

58. $m\angle CDE$ and $m\angle RST$
59. JM and ML
60. WX and ZY

61. HISTORY The early Egyptians used to make triangles by using a rope with knots tied at equal intervals. Each vertex of the triangle had to occur at a knot. How many different triangles can be formed using the rope below? (Lesson 5-5)

62. Show that the triangles are congruent by identifying all congruent corresponding parts. Then write a congruence statement. (Lesson 4-3)

63.

Skills Review

In the figure, $\ell \parallel m$ and $\overline{AC} \parallel \overline{BD}$. Name all pairs of angles for each type indicated. (Lesson 3-1)

65. alternate interior angles
66. consecutive interior angles
It is possible to find the interior and exterior measurements along with the sum of the interior angles of any regular polygon with \(n \) number of sides by using a spreadsheet.

ACTIVITY

Design a spreadsheet using the following steps.

- Label the columns as shown in the spreadsheet below.
- Enter the digits 3–10 in the first column.
- The number of triangles in a polygon is 2 fewer than the number of sides. Write a formula for Cell B1 to subtract 2 from each number in Cell A1.
- Enter a formula for Cell C1 so the spreadsheet will calculate the sum of the measures of the interior angles. Remember that the formula is \(S = (n - 2)180 \).
- Continue to enter formulas so that the indicated computation is performed. Then, copy each formula through Row 9. The final spreadsheet will appear as below.

Exercises

1. Write the formula to find the measure of each interior angle in the polygon.
2. Write the formula to find the sum of the measures of the exterior angles.
3. What is the measure of each interior angle if the number of sides is 1? 2?
4. Is it possible to have values of 1 and 2 for the number of sides? Explain.

For Exercises 5–8, use the spreadsheet.

5. How many triangles are in a polygon with 17 sides?
6. Find the measure of an exterior angle of a regular polygon with 16 sides.
7. Find the measure of an interior angle of a regular polygon with 115 sides.
8. If the measure of the exterior angles is 0, find the measure of the interior angles. Is this possible? Explain.
Parallelograms

Why?

The arm of the basketball goal shown can be adjusted to a height of 10 feet or 5 feet. Notice that as the height is adjusted, each pair of opposite sides of the quadrilateral formed by the arms remains parallel.

Sides and Angles of Parallelograms

A parallelogram is a quadrilateral with both pairs of opposite sides parallel. To name a parallelogram, use the symbol \(\square \). In \(\square ABCD, BC \parallel AD \) and \(AB \parallel DC \) by definition.

Other properties of parallelograms are given in the theorems below:

Theorems

Properties of Parallelograms

6.3 If a quadrilateral is a parallelogram, then its opposite sides are congruent.

Abbreviation Opp. sides of a \(\square \) are \(\cong \).

Example If \(JKLM \) is a parallelogram, then \(JK \cong ML \) and \(JM \cong KL \).

6.4 If a quadrilateral is a parallelogram, then its opposite angles are congruent.

Abbreviation Opp. \(\angle \) of a \(\square \) are \(\cong \).

Example If \(JKLM \) is a parallelogram, then \(\angle J \cong \angle L \) and \(\angle K \cong \angle M \).

6.5 If a quadrilateral is a parallelogram, then its consecutive angles are supplementary.

Abbreviation Cons. \(\angle \) in a \(\square \) are supplementary.

Example If \(JKLM \) is a parallelogram, then \(x + y = 180 \).

6.6 If a parallelogram has one right angle, then it has four right angles.

Abbreviation If a \(\square \) has 1 rt. \(\angle \), it has 4 rt. \(\angle \)s.

Example In \(\square JKLM \), if \(\angle J \) is a right angle, then \(\angle K, \angle L, \) and \(\angle M \) are also right angles.

You will prove Theorems 6.3, 6.5, and 6.6 in Exercises 28, 26, and 7, respectively.
EXAMPLE 1

Use Properties of Parallelograms

BASKETBALL In \(\square ABCD \), suppose \(m\angle A = 55 \), \(AB = 2.5 \) feet, and \(BC = 1 \) foot. Find each measure.

a. \(DC \)

\[
DC = AB \quad \text{Opp. sides of a \(\square \) are \(\cong \).} \\
= 2.5 \text{ ft} \quad \text{Substitution}
\]

b. \(m\angle B \)

\[
m\angle B + m\angle A = 180 \quad \text{Cons. \(\angle \) in a \(\square \) are supplementary.} \\
m\angle B + 55 = 180 \quad \text{Substitution} \\
m\angle B = 125 \quad \text{Subtract 55 from each side.}
\]

c. \(m\angle C \)

\[
m\angle C = m\angle A \quad \text{Opp. \(\angle \) of a \(\square \) are \(\cong \).} \\
= 55 \quad \text{Substitution}
\]

Check Your Progress

1. MIRRORS The wall-mounted mirror shown uses parallelograms that change shape as the arm is extended. In \(\square JKL \), suppose \(m\angle J = 47 \). Find each measure.

A. \(m\angle L \)
B. \(m\angle M \)

C. Suppose the arm was extended further so that \(m\angle J = 90 \). What would be the measure of each of the other angles? Justify your answer.
Diagonals of Parallelograms The diagonals of a parallelogram have special properties as well.

Theorems

Diagonals of Parallelograms

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7</td>
<td>If a quadrilateral is a parallelogram, then its diagonals bisect each other.</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Diag. of a (\square) bisect each other.</td>
</tr>
<tr>
<td>Example</td>
<td>If (ABCD) is a parallelogram, then (AP \cong PC) and (DP \cong PB).</td>
</tr>
</tbody>
</table>

Diagonals of Parallelograms

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.8</td>
<td>If a quadrilateral is a parallelogram, then each diagonal separates the parallelogram into two congruent triangles.</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Diag. separates a (\square) into (\triangle) (\cong) (\triangle).</td>
</tr>
<tr>
<td>Example</td>
<td>If (ABCD) is a parallelogram, then (\triangle ABD \cong \triangle CDB).</td>
</tr>
</tbody>
</table>

You will prove Theorems 6.7 and 6.8 in Exercises 29 and 27, respectively.

StudyTip

Congruent Triangles

A parallelogram with two diagonals divides the figure into two pairs of congruent triangles.

Example 2

Use Properties of Parallelograms and Algebra

Algebra If \(QRST \) is a parallelogram, find the value of the indicated variable.

<table>
<thead>
<tr>
<th>Part</th>
<th>Expression</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>(x)</td>
<td>(QT \cong RS) Opp. sides of a (\square) are (\cong).</td>
</tr>
<tr>
<td></td>
<td>(QT = RS) Definition of congruence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5x = 27) Substitution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x = 5.4) Divide each side by 5.</td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>(y)</td>
<td>(TP \cong PR) Diag. of a (\square) bisect each other.</td>
</tr>
<tr>
<td></td>
<td>(TP = PR) Definition of congruence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2y - 5 = y + 4) Substitution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(y = 9) Subtract (y) and add 5 to each side.</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>(z)</td>
<td>(\triangle TQS \cong \triangle RSQ) Diag. separates a (\square) into (\triangle) (\cong) (\triangle).</td>
</tr>
<tr>
<td></td>
<td>(\angle QST \cong \angle SQR) CPCTC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(m\angle QST = m\angle SQR) Definition of congruence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3z = 33) Substitution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(z = 11) Divide each side by 3.</td>
<td></td>
</tr>
</tbody>
</table>

Check Your Progress

Find the value of each variable in the given parallelogram.

<table>
<thead>
<tr>
<th>Part</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A.</td>
<td>(y + 8)</td>
</tr>
<tr>
<td></td>
<td>(4x^\circ)</td>
</tr>
<tr>
<td></td>
<td>(2(x - 6)^\circ)</td>
</tr>
<tr>
<td></td>
<td>(5y)</td>
</tr>
<tr>
<td>2B.</td>
<td>(z + 5)</td>
</tr>
<tr>
<td></td>
<td>(3z - 4)</td>
</tr>
</tbody>
</table>

Personal Tutor glencoe.com
You can use Theorem 6.7 to determine the coordinates of the intersection of the diagonals of a parallelogram on a coordinate plane given the coordinates of the vertices.

EXAMPLE 3
Parallelograms and Coordinate Geometry

COORDINATE GEOMETRY Determine the coordinates of the intersection of the diagonals of $\square FGHJ$ with vertices $F(-2, 4)$, $G(3, 5)$, $H(2, -3)$, and $J(-3, -4)$.

Since the diagonals of a parallelogram bisect each other, their intersection point is the midpoint of FH and GJ. Find the midpoint of FH with endpoints $(-2, 4)$ and $(2, -3)$.

\[
\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) = \left(\frac{-2 + 2}{2}, \frac{4 + (-3)}{2} \right)
\]
Midpoint Formula
\[
= (0, 0.5)
\]
Simplify.

The coordinates of the intersection of the diagonals of $\square FGHJ$ are $(0, 0.5)$.

CHECK Find the midpoint of GJ with endpoints $(3, 5)$ and $(-3, -4)$.

\[
\left(\frac{3 + (-3)}{2}, \frac{5 + (-4)}{2} \right) = (0, 0.5) \checkmark
\]

Check Your Progress

3. **COORDINATE GEOMETRY** Determine the coordinates of the intersection of the diagonals of $\square RSTU$ with vertices $R(-8, -2)$, $S(-6, 7)$, $T(6, 7)$, and $U(4, -2)$.

You can use the properties of parallelograms and their diagonals to write proofs.

EXAMPLE 4
Proofs Using the Properties of Parallelograms

Write a paragraph proof.

Given: $\square ABDG$, $AF \cong CF$

Prove: $\angle BDG \cong \angle C$

Proof:

We are given $ABDG$ is a parallelogram. Since opposite angles in a parallelogram are congruent, $\angle BDG \cong \angle A$. We are also given that $\overline{AF} \cong \overline{CF}$. By the Isosceles Triangle Theorem, $\angle A \cong \angle C$. So, by the Transitive Property of Congruence, $\angle BDG \cong \angle C$.

Check Your Progress

4. Write a two-column proof.

Given: $\square HJKP$ and $\square PKLM$

Prove: $HJ \cong ML$
1. **NAVIGATION** To chart a course, sailors use a parallel ruler. One edge of the ruler is placed along the line representing the direction of the course to be taken. Then the other ruler is moved until its edge reaches the compass rose printed on the chart. Reading the compass determines which direction to travel. The rulers and the crossbars form the tool \(\text{MNPQ} \).

 a. If \(m\angle NMQ = 32 \), find \(m\angle MNP \).

 b. If \(m\angle MQP = 125 \), find \(m\angle MNP \).

 c. If \(MQ = 4 \), what is \(NP \)?

2. **ALGEBRA** Find the value of each variable.

 a. \((2x - 1)° \)

 b. \(75°

 c. \(105°

 d. \(5\)

3. **COORDINATE GEOMETRY** Determine the coordinates of the intersection of the diagonals of \(\text{ABCD} \) with vertices \(A(-4, 6), B(5, 6), C(4, -2), \) and \(D(-5, -2) \).

4. **PROOF** Write the indicated type of proof.

 a. paragraph

 Given: \(\text{ABCD}, \angle A \) is a right angle.

 Prove: \(\angle B, \angle C, \) and \(\angle D \) are right angles. (Theorem 6.6)

 b. two-column

 Given: \(ABCH \) and \(DCGF \) are parallelograms.

 Prove: \(\angle A \cong \angle F \)

Practice and Problem Solving

1. Use \(\text{PQRS} \) to find each measure.

 a. \(m\angle R \)

 b. \(QR \)

 c. \(QP \)

 d. \(m\angle S \)
HOME DECOR The slats on Venetian blinds are designed to remain parallel in order to direct the path of light coming in a widow. In \(\Box FGHJ \), \(FJ = \frac{3}{4} \) inch, \(FG = 1 \) inch, and \(\angle JHG = 62 \).

Find each measure.

a. \(JH \)

b. \(GH \)

c. \(m\angle JFG \)

d. \(m\angle FJH \)

DOG SHOWS Wesley is a member of the kennel club in his area. His club uses accordion fencing like the section shown at the right to block out areas at dog shows.

a. Identify two pairs of congruent segments.

b. Identify two pairs of supplementary angles.

Example 2

ALGEBRA Find the value of each variable.

15. \[\begin{align*}
X & = 3a + 7 \\
2b & = 101^\circ \\
W & = 4a \\
4a & = 2b
\end{align*} \]

16. \[\begin{align*}
Q & = x^2 \\
P & = y^2 \\
R & = (x - 5)^\circ \\
S & = (2x + 11)^\circ
\end{align*} \]

17. \[\begin{align*}
A & = 10 \\
B & = 6 \\
C & = 7 \\
D & = 11 \end{align*} \]

18. \[\begin{align*}
T & = 3b - 17 \\
V & = a + 15 \\
W & = b - 11 \\
3a + 11 & = 3b - 17
\end{align*} \]

19. \[\begin{align*}
F & = 2y^\circ \\
G & = (x - 5)^\circ \\
H & = (2x + 11)^\circ \\
3y & = 5 \end{align*} \]

20. \[\begin{align*}
J & = 2x + 7 \\
K & = 3y - 5 \\
L & = y + 5 \\
z & = 9
\end{align*} \]

Example 3

COORDINATE GEOMETRY Find the coordinates of the intersection of the diagonals of \(\Box WXYZ \) with the given vertices.

21. \(W(-1, 7), X(8, 7), Y(6, -2), Z(-3, -2) \)

22. \(W(-4, 5), X(5, 7), Y(4, -2), Z(-5, -4) \)

Example 4

PROOF Write a two-column proof.

23. **Given:** \(\Box WXTV \) and \(\Box ZYVT \) are parallelograms.

Prove: \(WX \cong ZY \)

24. **Given:** \(\Box BDHA, \overline{CA} \cong \overline{CG} \)

Prove: \(\angle BDH \cong \angle G \)
25. **Flags** Refer to the Alabama state flag at the right.

Given: \(\triangle ACD \cong \triangle CAB \)

Prove: \(DP \cong PB \)

Proof Write the indicated type of proof.

26. **Two-column**

Given: \(\square GKL \)

Prove: \(\angle G \) and \(\angle K \), \(\angle K \) and \(\angle L \), \(\angle L \) and \(\angle M \), and \(\angle M \) and \(\angle G \) are supplementary.

(Theorem 6.5)

27. **Two-column**

Given: \(\square WXYZ \)

Prove: \(\triangle WXZ \cong \triangle YZ \)

(Theorem 6.8)

28. **Two-column**

Given: \(\square PQRS \)

Prove: \(PQ \cong RS \), \(QR \cong SP \)

(Theorem 6.3)

29. **Paragraph**

Given: \(\square ACDE \) is a parallelogram.

Prove: \(EC \) bisects \(AD \).

(Theorem 6.7)

30. **Coordinate Geometry** Use the graph shown.

a. Use the Distance Formula to determine if the diagonals of \(\square JKL \) bisect each other. Explain.

b. Determine whether the diagonals are congruent. Explain.

c. Use slopes to determine if the consecutive sides are perpendicular. Explain.

31. **Algebra** Use \(\square ABCD \) to find each measure or value.

- \(x \)
- \(y \)
- \(m \angle AFB \)
- \(m \angle DAB \)
- \(m \angle ACD \)
- \(m \angle DAC \)

32. **Geometry** \(\square ABCD \) has vertices \(A(-2, 5) \), \(B(2, 2) \), and \(C(4, -4) \).

Determine the coordinates of vertex \(D \). Explain your reasoning.
38. **MECHANICS** Scissor lifts are variable elevation work platforms. One is shown at the right. In the diagram, \(ABCD\) and \(DEFG\) are congruent parallelograms.

a. List the angle(s) congruent to \(\angle A\). Explain your reasoning.

b. List the segment(s) congruent to \(\overline{BC}\). Explain your reasoning.

c. List the angle(s) supplementary to \(\angle C\). Explain your reasoning.

PROOF Write a two-column proof.

39. **Given:** \(\square VWYZ, \overline{WX} \perp \overline{WY}, \overline{XY} \perp \overline{VZ}\)

Prove: \(\triangle WYZ \cong \triangle VWX\)

40. **MULTIPLE REPRESENTATIONS** In this problem, you will explore tests for parallelograms.

a. **GEOMETRIC** Draw three pairs of segments that are both congruent and parallel and connect the endpoints to form quadrilaterals. Label one quadrilateral \(ABCD\), one \(MNOP\), and one \(WXYZ\). Measure and label the sides and angles of the quadrilaterals.

b. **TABULAR** Complete the table below for each quadrilateral.

<table>
<thead>
<tr>
<th>Quadrilateral</th>
<th>Opposite Sides Congruent?</th>
<th>Opposite Angles Congruent?</th>
<th>Parallelogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ABCD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MNOP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(WXYZ)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c. **VERBAL** Make a conjecture about quadrilaterals with one pair of segments that are both congruent and parallel.

H.O.T. Problems Use **Higher-Order Thinking Skills**

41. **CHALLENGE** \(ABCD\) is a parallelogram with side lengths as indicated in the figure at the right. The perimeter of \(ABCD\) is 22. Find \(AB\).

42. **WRITING IN MATH** Explain why parallelograms are **always** quadrilaterals, but quadrilaterals are **sometimes** parallelograms.

43. **OPEN ENDED** Provide a counterexample to show that parallelograms are not always congruent if their corresponding sides are congruent.

44. **REASONING** Find \(m\angle 1\) and \(m\angle 10\) in the figure at the right. Explain.

45. **WRITING IN MATH** Summarize the properties of the sides, angles, and diagonals of a parallelogram.
46. Two consecutive angles of a parallelogram measure $3x + 42$ and $9x - 18$. What are the measures of the angles?

A. 13, 167
B. 58.5, 31.5
C. 39, 141
D. 81, 99

47. **GRIDDED RESPONSE** Parallelogram $MNPQ$ is shown. What is the value of x?

48. **ALGEBRA** In a history class with 32 students, the ratio of girls to boys is 5 to 3. How many more girls are there than boys?

F. 2
G. 8
H. 12
J. 15

49. **SAT/ACT** The table shows the heights of the tallest buildings in Kansas City, Missouri. To the nearest tenth, what is the positive difference between the median and the mean of the data?

<table>
<thead>
<tr>
<th>Name</th>
<th>Height (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Kansas City Place</td>
<td>193</td>
</tr>
<tr>
<td>Town Pavilion</td>
<td>180</td>
</tr>
<tr>
<td>Hyatt Regency</td>
<td>154</td>
</tr>
<tr>
<td>Power and Light Building</td>
<td>147</td>
</tr>
<tr>
<td>City Hall</td>
<td>135</td>
</tr>
<tr>
<td>1201 Walnut</td>
<td>130</td>
</tr>
</tbody>
</table>

A. 5
B. 6
C. 7
D. 8

50. 108
51. 140
52. 147.3
53. 160
54. 135
55. 176.4

56. **LANDSCAPING** When landscapers plant new trees, they usually brace the tree using a stake tied to the trunk of the tree. Use the SAS or SSS Inequality to explain why this is an effective method for keeping a newly planted tree perpendicular to the ground. (Lesson 5-6)

Determine whether the solid is a polyhedron. Then identify the solid. If it is a polyhedron, name the bases, faces, edges, and vertices. (Lesson 1-7)

57.
58.
59.

Skills Review

The vertices of a quadrilateral are $W(3, -1)$, $X(4, 2)$, $Y(-2, 3)$ and $Z(-3, 0)$. Determine whether each segment is a side or diagonal of the quadrilateral, and find the slope of each segment. (Lesson 3-3)

60. \overline{YZ}
61. \overline{YW}
62. \overline{ZW}
You can use the Cabri Junior application on a TI-83/84 Plus graphing calculator to discover properties of parallelograms.

Activity

Construct a quadrilateral with one pair of sides that are both parallel and congruent.

Step 1 Construct a segment using the Segment tool on the F2 menu. Label the segment AB. This is one side of the quadrilateral.

Step 2 Use the Parallel tool on the F3 menu to construct a line parallel to the segment. Pressing [ENTER] will draw the line and a point on the line. Label the point C.

Step 3 Access the Compass tool on the F3 menu. Set the compass to the length of AB by selecting one endpoint of the segment and then the other. Construct a circle centered at C.

Step 4 Use the Point Intersection tool on the F2 menu to draw a point at the intersection of the line and the circle. Label the point D. Then use the Segment tool on the F2 menu to draw AC and BD.

Step 5 Use the Hide/Show tool on the F5 menu to hide the circle. Then access Slope tool under Measure on the F5 menu. Display the slopes of AB, BD, CD, and AC.

Analyze the Results

1. What is the relationship between sides AB and CD? Explain how you know.
2. What do you observe about the slopes of opposite sides of the quadrilateral? What type of quadrilateral is $ABDC$? Explain.
3. Click on point A and drag it to change the shape of $ABDC$. What do you observe?
4. Make a conjecture about a quadrilateral with a pair of opposite sides that are both congruent and parallel.
5. Use a graphing calculator to construct a quadrilateral with both pairs of opposite sides congruent. Then analyze the slopes of the sides of the quadrilateral. Make a conjecture based on your observations.
Lexi and Rosalinda cut strips of bulletin board paper at an angle to form the hallway display shown. Their friends asked them how they cut the strips so that their sides were parallel without using a protractor.

Rosalinda explained that since the left and right sides of the paper were parallel, she only needed to make sure that the sides were cut to the same length to guarantee that a strip would form a parallelogram.

Conditions for Parallelograms If a quadrilateral has each pair of opposite sides parallel, it is a parallelogram by definition. This is not the only test, however, that can be used to determine if a quadrilateral is a parallelogram.
EXAMPLE 1
Identify Parallelograms

Determine whether the quadrilateral is a parallelogram. Justify your answer.

Opposite sides FG and JH are congruent because they have the same measure. Also, since $\angle FGH$ and $\angle GHJ$ are supplementary consecutive interior angles, $FG \parallel JH$. Therefore, by Theorem 6.12, $FGHJ$ is a parallelogram.

Check Your Progress

✓ 1A. 12 cm 5 cm
✓ 1B. 85° 85°

You can use the conditions of parallelograms to prove relationships in real-world situations.

EXAMPLE 2
Use Parallelograms to Prove Relationships

FISHING
The diagram shows a side view of the tackle box at the left. In the diagram, $PQ = RS$ and $PR = QS$. Explain why the upper and middle trays remain parallel no matter to what height the trays are raised or lowered.

Since both pairs of opposite sides of quadrilateral $PQRS$ are congruent, $PQRS$ is a parallelogram by Theorem 6.9. By the definition of a parallelogram, opposite sides are parallel, so $PQ \parallel RS$. Therefore, no matter the vertical position of the trays, they will always remain parallel.

Check Your Progress

2. BANNERS In the example at the beginning of the lesson, explain why the cuts made by Lexi and Rosalinda are parallel.
You can also use the conditions of parallelograms along with algebra to find missing values that make a quadrilateral a parallelogram.

EXAMPLE 3 Use Parallelograms and Algebra to Find Values

If \(FK = 3x - 1 \), \(KG = 4y + 3 \), \(JK = 6y - 2 \), and \(KH = 2x + 3 \), find \(x \) and \(y \) so that the quadrilateral is a parallelogram.

By Theorem 6.11, if the diagonals of a quadrilateral bisect each other, then it is a parallelogram. So find \(x \) such that \(FK \cong KH \) and \(y \) such that \(JK \cong KG \).

\[
FK = KH \\
3x - 1 = 2x + 3 \\
Substitution \\
x - 1 = 3 \\
Subtract 2x from each side. \\
x = 4 \\
Add 1 to each side. \\
JK = KG \\
6y - 2 = 4y + 3 \\
Substitution \\
2y - 2 = 3 \\
Subtract 4y from each side. \\
2y = 5 \\
Add 2 to each side. \\
y = 2.5 \\
Divide each side by 2.
\]

So, when \(x \) is 4 and \(y \) is 2.5, quadrilateral \(FGHJ \) is a parallelogram.

Check Your Progress

Find \(x \) and \(y \) so that each quadrilateral is a parallelogram.

3A. \(\angle A = 56^\circ \), \(\angle B = (5y - 26)^\circ \), \(\angle C = (4y + 4)^\circ \), \(\angle D = 7x^\circ \)

3B. \(3x + 4 \), \(4y - 9 \), \(2y + 5 \), \(5x - 2 \)

You have learned the conditions of parallelograms. The following list summarizes how to use the conditions to prove a quadrilateral is a parallelogram.

Concept Summary

Prove that a Quadrilateral Is a Parallelogram

1. Show that both pairs of opposite sides are parallel. (Definition)
2. Show that both pairs of opposite sides are congruent. (Theorem 6.9)
3. Show that both pairs of opposite angles are congruent. (Theorem 6.10)
4. Show that the diagonals bisect each other. (Theorem 6.11)
5. Show that a pair of opposite sides is both parallel and congruent. (Theorem 6.12)
In Chapter 4, you learned that variable coordinates can be assigned to the vertices of triangles. Then the Distance, Slope, and Midpoint Formulas were used to write coordinate proofs of theorems. The same can be done with quadrilaterals.

StudyTip

Midpoint Formula
To show that a quadrilateral is a parallelogram, you can also use the Midpoint Formula. If the midpoint of each diagonal is the same point, then the diagonals bisect each other.

EXAMPLE 5 Parallelograms and Coordinate Proofs

Write a coordinate proof for the following statement.

If one pair of opposite sides of a quadrilateral is both parallel and congruent, then the quadrilateral is a parallelogram.

Step 1 Position quadrilateral $ABCD$ on the coordinate plane such that $AB \parallel DC$ and $AB \cong DC$.

- Begin by placing the vertex A at the origin.
- Let AB have a length of a units. Then B has coordinates $(a, 0)$.
- Since horizontal segments are parallel, position the endpoints of DC so that they have the same y-coordinate, c.
- So that the distance from D to C is also a units, let the x-coordinate of D be b and of C be $b + a$.

In Chapter 4, you learned that variable coordinates can be assigned to the vertices of triangles. Then the Distance, Slope, and Midpoint Formulas were used to write coordinate proofs of theorems. The same can be done with quadrilaterals.
Lesson 6-3 Tests for Parallelograms

Step 2 Use your figure to write a proof.

Given: quadrilateral $ABCD$, $\overline{AB} \parallel \overline{DC}$, $\overline{AB} \cong \overline{DC}$

Prove: $ABCD$ is a parallelogram.

Coordinate Proof:

By definition, a quadrilateral is a parallelogram if opposite sides are parallel. We are given that $\overline{AB} \parallel \overline{DC}$, so we need only show that $\overline{AD} \parallel \overline{BC}$.

Use the Slope Formula:

$$\text{slope of } \overline{AD} = \frac{c - 0}{b - 0} = \frac{c}{b}$$

$$\text{slope of } \overline{BC} = \frac{c - 0}{b + a - a} = \frac{c}{b}$$

Since \overline{AD} and \overline{BC} have the same slope, $\overline{AD} \parallel \overline{BC}$. So quadrilateral $ABCD$ is a parallelogram because opposite sides are parallel.

Check Your Progress

5. Write a coordinate proof of this statement: If a quadrilateral is a parallelogram, then opposite sides are congruent.

Check Your Understanding

Example 1

Determine whether each quadrilateral is a parallelogram. Justify your answer.

1.

2.

Example 2

3. **KITES** Charmaine is building the kite shown below. She wants to be sure that the string around her frame forms a parallelogram before she secures the material to it. How can she use the measures of the wooden portion of the frame to prove that the string forms a parallelogram? Explain your reasoning.

Example 3

ALGEBRA Find x and y so that the quadrilateral is a parallelogram.

4.

5.

Personal Tutor glencoe.com
COORDINATE GEOMETRY Graph each quadrilateral with the given vertices. Determine whether the figure is a parallelogram. Justify your answer with the method indicated.

6. \(A(-2, 5), B(5, 5), C(8, -1), D(-1, -1); \) Slope Formula

7. \(W(-5, 4), X(3, 4), Y(1, -3), Z(-7, -3); \) Midpoint Formula

8. Write a coordinate proof for the statement: If a quadrilateral is a parallelogram, then its diagonals bisect each other.

Example 1

Determine whether each quadrilateral is a parallelogram. Justify your answer.

9.

10.

11.

12.

13.

14.

Example 2

If \(ACDH \) is a parallelogram, \(B \) is the midpoint of \(AC \), and \(F \) is the midpoint of \(HD \), write a flow proof to prove that \(ABFH \) is a parallelogram.

15. PROOF

16. PROOF

If \(WXYZ \) is a parallelogram, \(\angle W \cong \angle X \), and \(M \) is the midpoint of \(WX \), write a paragraph proof to prove that \(ZMY \) is an isosceles triangle.

Example 3

ALGEBRA Find \(x \) and \(y \) so that the quadrilateral is a parallelogram.

17. REPAIR Parallelogram lifts are used to elevate large vehicles for maintenance. In the diagram, \(ABEF \) and \(BCDE \) are parallelograms. Write a two-column proof to show that \(ACFD \) is also a parallelogram.
ALGEBRA Find x and y so that the quadrilateral is a parallelogram.

21.

COORDINATE GEOMETRY Graph each quadrilateral with the given vertices. Determine whether the figure is a parallelogram. Justify your answer with the method indicated.

24. $A(-3, 4), B(4, 5), C(5, -1), D(-2, -2)$; Slope Formula
25. $J(-4, -4), K(-3, 1), L(4, 3), M(3, -3)$; Distance Formula
26. $V(3, 5), W(1, -2), X(-6, 2), Y(-4, 7)$; Distance and Slope Formulas
27. $Q(2, -4), R(4, 3), S(-3, 6), T(-5, -1)$; Distance and Slope Formulas

28. Write a coordinate proof for the statement: If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

29. Write a coordinate proof for the statement: If a parallelogram has one right angle, it has four right angles.

30. PROOF Write a paragraph proof of Theorem 6.10.

31. PANTOGRAPH Refer to the information at the left and the diagram below.
37. **SERVICE** While replacing a hand rail, a contractor uses a carpenter’s square to confirm that the vertical supports are perpendicular to the top step and the ground, respectively. How can the contractor prove that the two hand rails are parallel using the fewest measurements? Assume that the top step and the ground are both level.

38. **PROOF** Write a coordinate proof to prove that the segments joining the midpoints of the sides of any quadrilateral form a parallelogram.

39. **MULTIPLE REPRESENTATIONS** In this problem, you will explore the properties of rectangles. A rectangle is a quadrilateral with four right angles.

 a. **GEOMETRIC** Draw three rectangles with varying lengths and widths. Label one rectangle $ABCD$, one $MNOP$, and one $WXYZ$. Draw the two diagonals for each rectangle.

 b. **TABULAR** Measure the diagonals of each rectangle and complete the table at the right.

 c. **VERBAL** Write a conjecture about the diagonals of a rectangle.

<table>
<thead>
<tr>
<th>Rectangle</th>
<th>Side</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ABCD$</td>
<td>AC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD</td>
<td></td>
</tr>
<tr>
<td>$MNOP$</td>
<td>MO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NP</td>
<td></td>
</tr>
<tr>
<td>$WXYZ$</td>
<td>WY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XZ</td>
<td></td>
</tr>
</tbody>
</table>

40. **CHALLENGE** The diagonals of a parallelogram meet at the point $(0, 1)$. One vertex of the parallelogram is located at $(2, 4)$, and a second vertex is located at $(3, 1)$. Find the locations of the remaining vertices.

41. **WRITING IN MATH** Compare and contrast Theorem 6.9 and Theorem 6.3.

42. **REASONING** If two parallelograms have four congruent corresponding angles, are the parallelograms sometimes, always, or never congruent?

43. **OPEN ENDED** Position and label a parallelogram on the coordinate plane differently than shown in either Example 5, Exercise 35, or Exercise 36.

44. **CHALLENGE** If $ABCD$ is a parallelogram and $AJ \cong KC$, show that quadrilateral $JBKD$ is a parallelogram.

45. **WRITING IN MATH** Describe the information needed to prove that a quadrilateral is a parallelogram.
Lesson 6-3
Tests for Parallelograms

46. If sides AB and DC of quadrilateral $ABCD$ are parallel, which additional information would be sufficient to prove that quadrilateral $ABCD$ is a parallelogram?

A $AB \cong AC$ C $AC \cong BD$
B $AB \cong DC$ D $AD \cong BC$

47. SHORT RESPONSE Quadrilateral $ABCD$ is shown. AC is 40 and BD is $\frac{3}{5}AC$. BD bisects \overline{AC}. For what value of x is $ABCD$ a parallelogram?

48. ALGEBRA Jarod’s average driving speed for a 5-hour trip was 58 miles per hour. During the first 3 hours, he drove 50 miles per hour. What was his average speed in miles per hour for the last 2 hours of his trip?

F 70 H 60
G 66 J 54

49. SAT/ACT A parallelogram has vertices at $(0, 0)$, $(3, 5)$, and $(0, 5)$. What are the coordinates of the fourth vertex?

A $(0, 3)$ C $(5, 0)$
B $(5, 3)$ D $(3, 0)$

50. $A(−3, 5), B(6, 5), C(5, −4), D(−4, −4)$

51. $A(2, 5), B(10, 7), C(7, −2), D(−1, −4)$

Find the value of x. (Lesson 6-1)

52.

53.

54.

55. FITNESS Toshiro was at the gym for just over two hours. He swam laps in the pool and lifted weights. Prove that he did one of these activities for more than an hour. (Lesson 5-4)

56. Given: $\overline{EF} \parallel \overline{FK}, \overline{JG} \parallel \overline{KH}, \overline{EF} \cong \overline{GH}$
Prove: $\triangle EJG \cong \triangle FKH$

57. Given: $\overline{MN} \cong \overline{PQ}, \angle M \cong \angle Q, \angle 2 \cong \angle 3$
Prove: $\triangle MLP \cong \triangle QLN$

58. $X(−2, 2), Y(0, 1), Z(4, 1)$

59. $X(4, 1), Y(5, 3), Z(6, 2)$

Use slope to determine whether XY and YZ are perpendicular or not perpendicular. (Lesson 3-3)
Find the sum of the measures of the interior angles of each convex polygon. (Lesson 6-1)
1. pentagon
2. heptagon
3. 18-gon
4. 23-gon

Find the measure of each interior angle. (Lesson 6-1)
5.
6.

Find the value of x in each diagram. (Lesson 6-1)

Use \(\triangle WXYZ\) to find each measure. (Lesson 6-2)
13. \(m\angle WZY\)
14. \(WZ\)
15. \(m\angle XZY\)

16. DESIGN Describe two ways to ensure that the pieces of the design at the right would fit properly together. (Lesson 6-2)

17. ALGEBRA Find the value of each variable. (Lesson 6-2)

18. PROOF Write a two-column proof. (Lesson 6-2)

Given: \(\square GFBA\) and \(\square HACD\)
Prove: \(\angle F \equiv \angle D\)

Find x and y so that each quadrilateral is a parallelogram. (Lesson 6-3)

20.
21.

22. MUSIC Why will the keyboard stand shown below always remain parallel to the floor? (Lesson 6-3)

23. MULTIPLE CHOICE Which of the following quadrilaterals is not a parallelogram? (Lesson 6-3)

24. COORDINATE GEOMETRY Determine whether the figure is a parallelogram. Justify your answer with the method indicated. (Lesson 6-3)

25.

\(A(-6, -5), B(-1, -4), C(0, -1), D(-5, -2);\)
\(A(-6, -5), B(-1, -4), C(0, -1), D(-5, -2);\)
Distance Formula

\(Q(-5, 2), R(-3, -6), S(2, 2), T(-1, 6);\)
Slope Formula
Rectangles

Why?

Leonardo is in charge of set design for a school play. He needs to use paint to create the appearance of a doorway on a lightweight solid wall. The doorway is to be a rectangle 36 inches wide and 80 inches tall. How can Leonardo be sure that he paints a rectangle?

Properties of Rectangles

A rectangle is a parallelogram with four right angles. By definition, a rectangle has the following properties.

- All four angles are right angles.
- Opposite sides are parallel and congruent.
- Opposite angles are congruent.
- Consecutive angles are supplementary.
- Diagonals bisect each other.

In addition, the diagonals of a rectangle are congruent.

Theorem 6.13

Diagonals of a Rectangle

If a parallelogram is a rectangle, then its diagonals are congruent.

Abbreviation

If a □ is a rectangle, diag. are ≅.

Example

If □ JKLM is a rectangle, then JL ≅ MK.

You will prove Theorem 6.13 in Exercise 33.

Example 1

Use Properties of Rectangles

EXERCISE

A rectangular park has two walking paths as shown. If PS = 180 meters and PR = 200 meters, find QT.

\[QS \cong PR \]

If a □ is a rectangle, diag. are ≅.

\[QS = PR \]

Definition of congruence

\[QS = 200 \]

Substitution

Since PQRS is a rectangle, it is a parallelogram. The diagonals of a parallelogram bisect each other, so QT = ST.

\[QT + ST = QS \]

Segment Addition

\[QT + QT = QS \]

Substitution

\[2QT = QS \]

Simplify.

\[QT = \frac{1}{2}QS \]

Divide each side by 2.

\[QT = \frac{1}{2}(200) \text{ or } 100 \]

Substitution

Check Your Progress

Refer to the figure in Example 1.

1A. If TS = 120 meters, find PR.

1B. If m∠PRS = 64, find m∠SQR.
You can use the properties of rectangles along with algebra to find missing values.

Example 2: Use Properties of Rectangles and Algebra

ALGEBRA Quadrilateral JKLM is a rectangle. If \(m\angle KJL = 2x + 4 \) and \(m\angle JLK = 7x + 5 \), find \(x \).

Since JKLM is a rectangle, it has four right angles. So, \(m\angle MLK = 90 \). Since a rectangle is a parallelogram, opposite sides are parallel. Alternate interior angles of parallel lines are congruent, so \(\angle JLM \cong \angle KJL \) and \(m\angle JLM = m\angle KJL \).

\[
\begin{align*}
\angle JLM + \angle JLK &= 90 \quad \text{Angle Addition} \\
2x + 4 + 7x + 5 &= 90 \quad \text{Substitution} \\
9x + 9 &= 90 \quad \text{Add like terms.} \\
9x &= 81 \quad \text{Subtract 9 from each side.} \\
x &= 9 \quad \text{Divide each side by 9.}
\end{align*}
\]

Check Your Progress

2. Refer to the figure in Example 2. If \(JP = 3y - 5 \) and \(MK = 5y + 1 \), find \(y \).

Prove that Parallelograms are Rectangles

The converse of Theorem 6.13 is also true.

Theorem 6.14

If the diagonals of a parallelogram are congruent, then the parallelogram is a rectangle.

Abbreviation If diag. of a \(\square \) are \(\cong \), then \(\square \) is a rectangle.

Example If \(\overline{WY} \cong \overline{XZ} \) in \(\square WXYZ \), then \(\square WXYZ \) is a rectangle.

You will prove Theorem 6.14 in Exercise 34.

Example 3: Proving Rectangle Relationships

Dodgeball A community recreation center has created an outdoor dodgeball playing field. To be sure that it meets the ideal playing field requirements, they measure the sides of the field and its diagonals. If \(AB = 60 \) feet, \(BC = 30 \) feet, \(CD = 60 \) feet, \(AD = 30 \) feet, \(AC = 67 \) feet, and \(BD = 67 \) feet, explain how the recreation center can be sure that the playing field is rectangular.

Since \(AB = CD \), \(BC = AD \), and \(AC = BD \), \(AB \cong CD \), \(BC \cong AD \), and \(AC \cong BD \).

Because \(AB \cong CD \) and \(BC \cong AD \), \(ABCD \) is a parallelogram. Since \(AC \) and \(BD \) are congruent diagonals in \(\square ABCD \), \(\square ABCD \) is a rectangle.
3. **SET DESIGN** Refer to the beginning of the lesson. Leonardo measures the sides of his figure and confirms that they have the desired measures as shown. Using a carpenter’s square, he also confirms that the measure of the bottom left corner of the figure is a right angle. Can he conclude that the figure is a rectangle? Explain.

![Diagram of a rectangle with measurements]

You can also use the properties of rectangles to prove that a quadrilateral positioned on a coordinate plane is a rectangle given the coordinates of the vertices.

Example 4

Rectangles and Coordinate Geometry

COORDINATE GEOMETRY Quadrilateral $PQRS$ has vertices $P(-5, 3)$, $Q(1, -1)$, $R(-1, -4)$, and $S(-7, 0)$. Determine whether $PQRS$ is a rectangle by using the Distance Formula.

Step 1 Use the Distance Formula to determine whether $PQRS$ is a parallelogram by determining if opposite sides are congruent.

- $PQ = \sqrt{(-5 - 1)^2 + (3 - (-1))^2}$ or $\sqrt{52}$
- $RS = \sqrt{(-1 - (-7))^2 + (-4 - 0)^2}$ or $\sqrt{52}$
- $PS = \sqrt{(-5 - (-7))^2 + (3 - 0)^2}$ or $\sqrt{13}$
- $QR = \sqrt{[1 - (-1)]^2 + [-1 - (-4)]^2}$ or $\sqrt{13}$

Since opposite sides of the quadrilateral have the same measure, they are congruent. So, quadrilateral $PQRS$ is a parallelogram.

Step 2 Determine whether the diagonals of $\square PQRS$ are congruent.

- $PR = \sqrt{(-5 - (-1))^2 + [3 - (-4)]^2}$ or $\sqrt{65}$
- $QS = \sqrt{[1 - (-7)]^2 + (-1 - 0)^2}$ or $\sqrt{65}$

Since the diagonals have the same measure, they are congruent. So, $\square PQRS$ is a rectangle.

Check Your Progress

4. Quadrilateral $JKLM$ has vertices $J(-10, 2)$, $K(-8, -6)$, $L(5, -3)$, and $M(2, 5)$. Determine whether $JKLM$ is a rectangle using the Slope Formula.
Check Your Understanding

Example 1 p. 419 FARMING An X-brace on a barn door is both decorative and functional. It helps to prevent the door from warping over time. If \(ST = 3 \frac{13}{16} \) feet, \(PS = 7 \) feet, and \(m\angle PTQ = 67 \), find each measure.
1. \(QR \)
2. \(SQ \)
3. \(m\angle TQR \)
4. \(m\angle TSR \)

Example 2 p. 420 ALGEBRA Quadrilateral \(DEFG \) is a rectangle.
5. If \(FD = 3x - 7 \) and \(EG = x + 5 \), find \(EG \).
6. If \(m\angle EFD = 2x - 3 \) and \(m\angle DFG = x + 12 \), find \(m\angle EFD \).

Example 3 p. 420 PROOF If \(ABDE \) is a rectangle and \(\overline{BC} \parallel \overline{DC} \), prove that \(\overline{AC} \parallel \overline{EC} \).

Example 4 p. 421 COORDINATE GEOMETRY Graph each quadrilateral with the given vertices. Determine whether the figure is a rectangle. Justify your answer using the indicated formula.
8. \(W(-4, 3), X(1, 5), Y(3, 1), Z(-2, -2) \); Slope Formula
9. \(A(4, 3), B(4, -2), C(-4, -2), D(-4, 3) \); Distance Formula

Practice and Problem Solving

Example 1 p. 419 FENCING X-braces are also used to provide support in fencing. If \(AB = 6 \) feet, \(AC = 2 \) feet, and \(m\angle CAE = 65 \), find each measure.
10. \(BD \)
11. \(CB \)
12. \(m\angle DEB \)
13. \(m\angle ECD \)

Example 2 p. 420 ALGEBRA Quadrilateral \(WXYZ \) is a rectangle.
14. If \(ZY = 2x + 3 \) and \(WX = x + 4 \), find \(WX \).
15. If \(PY = 3x - 5 \) and \(WP = 2x + 11 \), find \(ZP \).
16. If \(m\angle ZYW = 2x - 7 \) and \(m\angle WYX = 2x + 5 \), find \(m\angle ZYW \).
17. If \(ZP = 4x - 9 \) and \(PY = 2x + 5 \), find \(ZX \).
18. If \(m\angle XZY = 3x + 6 \) and \(m\angle ZXY = 5x - 12 \), find \(m\angle YXZ \).
19. If \(m\angle XZW = x - 11 \) and \(m\angle WZX = x - 9 \), find \(m\angle ZXY \).
PROOF Write a two-column proof.

20. Given: \(ABCD\) is a rectangle.
Prove: \(\triangle ADC \cong \triangle BCD\)

21. Given: \(QTVW\) is a rectangle.
Prove: \(\triangle SWQ \cong \triangle RVT\)

COORDINATE GEOMETRY Graph each quadrilateral with the given vertices. Determine whether the figure is a rectangle. Justify your answer using the indicated formula.

22. \(W(-2, 4), X(5, 5), Y(6, -2), Z(-1, -3)\); Slope Formula
23. \(J(3, 3), K(-5, 2), L(-4, -4), M(4, -3)\); Distance Formula
24. \(Q(-2, 2), R(0, -2), S(6, 1), T(4, 5)\); Distance Formula
25. \(G(1, 8), H(-7, 7), J(-6, 1), K(2, 2)\); Slope Formula

Quadrilateral \(ABCD\) is a rectangle. Find each measure if \(\angle 2 = 40^\circ\).

26. \(\angle 1\) 27. \(\angle 7\) 28. \(\angle 3\)
29. \(\angle 5\) 30. \(\angle 6\) 31. \(\angle 8\)

32. CONSTRUCTION Jody is building a new bookshelf using wood and metal supports like the one shown. To what length should she cut the metal supports in order for the bookshelf to be square, which means that the angles formed by the shelves and the vertical supports are all right angles? Explain your reasoning.

PROOF Write a two-column proof.

33. Theorem 6.13 34. Theorem 6.14

PROOF Write a paragraph proof of each statement.

35. If a parallelogram has one right angle, then it is a rectangle.
36. If a quadrilateral has four right angles, then it is a rectangle.

37. CONSTRUCTION Construct a rectangle using the construction for congruent segments and the construction for a line perpendicular to another line through a point on the line. Justify each step of the construction.

38. SPORTS Kyle is responsible for painting the football practice field. He has finished the end zone. Explain how Kyle can confirm that the end zone is the regulation size and be sure that it is also a rectangle using only a tape measure.

ALGEBRA Quadrilateral \(WXYZ\) is a rectangle.

39. If \(XW = 3, WZ = 4,\) and \(XZ = b\), find \(YW\).
40. If \(XZ = 2c\) and \(ZY = 6,\) and \(XY = 8,\) find \(WY\).
41. **SIGNS** The sign at the right is in the foyer of Nyoko’s school. Based on the dimensions given, can Nyoko be sure that the sign is a rectangle? Explain your reasoning.

PROOF Write a coordinate proof of each statement.

42. The diagonals of a rectangle are congruent.

43. If the diagonals of a parallelogram are congruent, then it is a rectangle.

44. **MULTIPLE REPRESENTATIONS** In the problem, you will explore properties of other special parallelograms.

a. **GEOMETRIC** Draw three parallelograms, each with all four sides congruent. Label one parallelogram \(ABCD\), one \(MNOP\), and one \(WXYZ\). Draw the two diagonals of each parallelogram and label the intersections \(R\).

b. **TABULAR** Use a protractor to measure the appropriate angles and complete the table below.

<table>
<thead>
<tr>
<th>Parallelogram</th>
<th>(ABCD)</th>
<th>(MNOP)</th>
<th>(WXYZ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle</td>
<td>(\angle ARB)</td>
<td>(\angle BRC)</td>
<td>(\angle MRN)</td>
</tr>
<tr>
<td>Angle Measure</td>
<td># (%)</td>
<td>&</td>
<td># (%)</td>
</tr>
</tbody>
</table>

\[\begin{align*}
\angle ARB & \quad \angle BRC & \quad \angle MRN & \quad \angle NRO & \quad \angle WRX & \quad \angle XRY
\end{align*}\]

c. **VERBAL** Make a conjecture about the diagonals of a parallelogram with four congruent sides.

H.O.T. Problems Use Higher-Order Thinking Skills

45. **CHALLENGE** In rectangle \(ABCD\), \(m \angle EAB = 4x + 6\), \(m \angle DEC = 10 - 11y\), and \(m \angle EBC = 60\). Find the values of \(x\) and \(y\).

46. **FIND THE ERROR** Parker says that any two congruent acute triangles can be arranged to make a rectangle. Tamika says that only two congruent right triangles can be arranged to make a rectangle. Is either of them correct? Explain your reasoning.

47. **REASONING** In the diagram at the right, lines \(n\), \(p\), \(q\), and \(r\) are parallel and lines \(\ell\) and \(m\) are parallel. How many rectangles are formed by the intersecting lines?

48. **OPEN ENDED** Write the equations of four lines having intersections that form the vertices of a rectangle. Verify your answer using coordinate geometry.

49. **WRITING IN MATH** Explain why all rectangles are parallelograms, but all parallelograms are not rectangles.
50. If $FI = -3x + 5y$, $FM = 3x + y$, $GH = 11$, and $GM = 13$, what values of x and y make parallelogram $FGHJ$ a rectangle?

![Parallelogram Diagram]

A $x = 3, y = 4$ C $x = 7, y = 8$
B $x = 4, y = 3$ D $x = 8, y = 7$

51. **ALGEBRA** A rectangular playground is surrounded by an 80-foot fence. One side of the playground is 10 feet longer than the other. Which of the following equations could be used to find r, the shorter side of the playground?

F $10r + r = 80$ H $r(r + 10) = 80$
G $4r + 10 = 80$ J $2(r + 10) + 2r = 80$

52. **SHORT RESPONSE** What is the measure of $\angle APB$?

![∠APB Diagram]

53. **SAT/ACT** If p is odd, which of the following must also be odd?

A $2p$ B $p + 2$
C $\frac{p}{2}$ D $2p - 2$

Spiral Review

ALGEBRA Find x and y so that the quadrilateral is a parallelogram. (Lesson 6-3)

54. \[
\begin{align*}
2x + 7 &= (2y - 5)^* \\
(2y - 21) &= \text{9} \\
&\quad\text{(x + 9)}
\end{align*}
\]

55. \[
\begin{align*}
4x - 17 &= (3y + 3)^* \\
(4y - 19)^* &= \text{2}x - 1
\end{align*}
\]

56. \[
\frac{2y + 5}{4y - 9} = \frac{2x + 6}{2x - 1}
\]

57. **MODEL AIRPLANES** A twin-engine airplane used for medium-range flights has a length of 78 meters and a wingspan of 90 meters. If a scale model is made with a wingspan of 36 centimeters, find its length. (Lesson 6-2)

Refer to the figure at the right. (Lesson 4-6)

58. If $\overline{AC} \cong \overline{AF}$, name two congruent angles.

59. If $\angle AHJ \cong \angle AJH$, name two congruent segments.

60. If $\angle AJL \cong \angle ALJ$, name two congruent segments.

61. If $\overline{JA} \cong \overline{KA}$, name two congruent angles.

Skills Review

Find the distance between each pair of points. (Lesson 1-3)

62. $(4, 2), (2, -5)$ 63. $(0, 6), (-1, -4)$ 64. $(-4, 3), (3, -4)$
Rhombi and Squares

Why?

Some fruits, nuts, and vegetables are packaged using bags made out of rhombus-shaped tubular netting. Similar shaped nylon netting is used for goals in such sports as soccer, hockey, and football. A rhombus and a square are both types of equilateral parallelograms.

Properties of Rhombi and Squares

A rhombus is a parallelogram with all four sides congruent. A rhombus has all the properties of a parallelogram and the two additional characteristics described in the theorems below.

Theorems

Diagonals of a Rhombus

6.15 If a parallelogram is a rhombus, then its diagonals are perpendicular.

Example If \(\square ABCD \) is a rhombus, then \(\overline{AC} \perp \overline{BD} \).

6.16 If a parallelogram is a rhombus, then each diagonal bisects a pair of opposite angles.

Example If \(\square NPQR \) is a rhombus, then \(\angle 1 \equiv \angle 2, \angle 3 \equiv \angle 4, \angle 5 \equiv \angle 6, \) and \(\angle 7 \equiv \angle 8. \)

You will prove Theorem 6.16 in Exercise 34.

Theorem 6.15

Given: \(ABCD \) is a rhombus.

Prove: \(\overline{AC} \perp \overline{BD} \)

Paragraph Proof:

Since \(ABCD \) is a rhombus, by definition \(AB \equiv BC \). A rhombus is a parallelogram and the diagonals of a parallelogram bisect each other, so \(BD \) bisects \(AC \) at \(P \). Thus, \(AP \equiv PC \) and \(BP \equiv BP \) by the Reflexive Property. So, \(\triangle APB \equiv \triangle CPB \) by SSS. \(\angle APB \equiv \angle CPB \) by CPCTC. \(\angle APB \) and \(\angle CPB \) also form a linear pair. Two congruent angles that form a linear pair are right angles. \(\angle APB \) is a right angle, so \(\overline{AC} \perp \overline{BD} \) by the definition of perpendicular lines.
EXAMPLE 1 Use Properties of a Rhombus

The diagonals of rhombus $FGHJ$ intersect at K. Use the given information to find each measure or value.

a. If $m\angle FJH = 82$, find $m\angle KHJ$.

Since $FGHJ$ is a rhombus, diagonal \overline{JG} bisects $\angle FJH$.
Therefore, $m\angle KJH = \frac{1}{2}m\angle FJH$. So $m\angle KJH = \frac{1}{2}(82)$ or 41. Since the diagonals of a rhombus are perpendicular, $m\angle KHJ = 90$ by the definition of perpendicular lines.

\[
m\angle KJH + m\angle JKH + m\angle KHJ = 180 \quad \text{Triangle Sum Theorem}
\]
\[
41 + 90 + m\angle KHJ = 180 \quad \text{Substitution}
\]
\[
131 + m\angle KHJ = 180 \quad \text{Simplify.}
\]
\[
m\angle KHJ = 49 \quad \text{Subtract 131 from each side.}
\]

b. ALGEBRA If $GH = x + 9$ and $JH = 5x - 2$, find x.

\[
\overline{GH} \cong \overline{JH} \quad \text{By definition, all sides of a rhombus are congruent.}
\]
\[
GH = JH \quad \text{Definition of congruence}
\]
\[
x + 9 = 5x - 2 \quad \text{Substitution}
\]
\[
9 = 4x - 2 \quad \text{Subtract } x \text{ from each side.}
\]
\[
11 = 4x \quad \text{Add 2 to each side.}
\]
\[
2.75 = x \quad \text{Divide each side by 4.}
\]

Check Your Progress

Refer to rhombus $FGHK$ above.

1A. If $FK = 5$ and $FG = 13$, find KJ.

1B. ALGEBRA If $m\angle JFK = 6y + 7$ and $m\angle KFG = 9y - 5$, find y.

A square is a parallelogram with four congruent sides and four right angles. Recall that a parallelogram with four right angles is a rectangle, and a parallelogram with four congruent sides is a rhombus. Therefore, a parallelogram that is both a rectangle and a rhombus is also a square.

The Venn diagram summarizes the relationships among parallelograms, rhombi, rectangles, and squares.
All of the properties of parallelograms, rectangles, and rhombi apply to squares. For example, the diagonals of a square bisect each other (parallelogram), are congruent (rectangle), and are perpendicular (rhombus).

Prove that Quadrilaterals are Rhombi or Squares

The theorems below provide conditions for rhombi and squares.

Theorems

Conditions for Rhombi and Squares

1. **Theorem 6.17**
 If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus. (Converse of Theorem 6.15)
 Example
 If \(\overline{JL} \perp \overline{KM} \), then \(\square JKLM \) is a rhombus.

2. **Theorem 6.18**
 If one diagonal of a parallelogram bisects a pair of opposite angles, then the parallelogram is a rhombus. (Converse of Theorem 6.16)
 Example
 If \(\angle 1 \equiv \angle 2 \) and \(\angle 3 \equiv \angle 4 \), or \(\angle 5 \equiv \angle 6 \) and \(\angle 7 \equiv \angle 8 \), then \(\square WXYZ \) is a rhombus.

3. **Theorem 6.19**
 If one pair of consecutive sides of a parallelogram are congruent, the parallelogram is a rhombus.
 Example
 If \(\overline{AB} \equiv \overline{BC} \), then \(\square ABCD \) is a rhombus.

4. **Theorem 6.20**
 If a quadrilateral is both a rectangle and a rhombus, then it is a square.

You will prove Theorems 6.17–6.20 in Exercises 35–38, respectively.

You can use the properties of rhombi and squares to write proofs.

EXAMPLE 2

Proofs Using Properties of Rhombi and Squares

Write a paragraph proof.

Given: \(JKLM \) is a parallelogram.
\(\triangle JKL \) is isosceles.

Prove: \(JKLM \) is a rhombus.

Paragraph Proof:

Since it is given that \(\triangle JKL \) is isosceles, \(\overline{KL} \equiv \overline{JK} \) by definition. These are consecutive sides of the given parallelogram \(JKLM \). So, by Theorem 6.19, \(JKLM \) is a rhombus.

Check Your Progress

2. Write a paragraph proof.

 Given: \(SQ \) is the perpendicular bisector of \(PR \).
 \(PR \) is the perpendicular bisector of \(SQ \).
 \(\triangle RMS \) is isosceles.

 Prove: \(PQRS \) is a square.
Use Conditions for Rhombi and Squares

ARCHAEOLOGY The key to the successful excavation of an archaeological site is accurate mapping. How can archaeologists be sure that the region they have marked off is a 1-meter by 1-meter square?

Each side of quadrilateral $ABCD$ measures 1 meter. Since opposite sides are congruent, $ABCD$ is a parallelogram. Since consecutive sides of $\square ABCD$ are congruent, it is a rhombus. If the archaeologists can show that $\square ABCD$ is also a rectangle, then by Theorem 6.20, $\square ABCD$ is a square.

If the diagonals of a parallelogram are congruent, then the parallelogram is a rectangle. So if the archaeologists measure the length of string needed to form each diagonal and find that these lengths are equal, then $ABCD$ is a square.

Check Your Progress

QUILTING Kathy is designing a quilt with blocks like the one shown.

3A. If she marks the diagonals of each yellow piece and determines that each pair of diagonals is perpendicular, can she conclude that each yellow piece is a rhombus? Explain.

3B. If all four angles of the green piece have the same measure and the bottom and left sides have the same measure, can she conclude that the green piece is a square? Explain.

In Chapter 4, you used coordinate geometry to classify triangles. Coordinate geometry can also be used to classify quadrilaterals.
EXAMPLE 4 Classify Quadrilaterals Using Coordinate Geometry

COORDINATE GEOMETRY Determine whether \(\squareJKLM \) with vertices \(J(-7, -2), K(0, 4), L(9, 2), \) and \(M(2, -4) \) is a rhombus, a rectangle, or a square. List all that apply. Explain.

Understand Plot and connect the vertices on a coordinate plane.

It appears from the graph that the parallelogram has four congruent sides, but no right angles. So, it appears that the figure is a rhombus, but not a square or a rectangle.

Plan If the diagonals of the parallelogram are congruent, then it is a rectangle. If they are perpendicular, then it is a rhombus. If they are both congruent and perpendicular, the parallelogram is a rectangle, a rhombus, and a square.

Solve Step 1 Use the Distance Formula to compare the diagonal lengths.

\[
KM = \sqrt{(2 - 0)^2 + (-4 - 4)^2} = \sqrt{68} \text{ or } 2\sqrt{17}
\]

\[
JL = \sqrt{(9 - (-7))^2 + [2 - (-2)]^2} = \sqrt{272} \text{ or } 4\sqrt{17}
\]

Since \(2\sqrt{17} \neq 4\sqrt{17} \), the diagonals are not congruent. So, \(\squareJKLM \) is not a rectangle. Since the figure is not a rectangle, it also cannot be a square.

Step 2 Use the Slope Formula to determine whether the diagonals are perpendicular.

slope of \(KM \) = \(\frac{-4 - 4}{2 - 0} \) = \(-\frac{8}{2} \) or \(-4\)

slope of \(JL \) = \(\frac{2 - (-2)}{9 - (-7)} \) = \(\frac{4}{16} \) or \(\frac{1}{4} \)

Since the product of the slopes of the diagonals is \(-1\), the diagonals are perpendicular, so \(\squareJKLM \) is a rhombus.

Check \(JK = \sqrt{[4 - (-2)]^2 + [0 - (-7)]^2} \) or \(\sqrt{85} \)

\(KL = \sqrt{(9 - 0)^2 + (2 - 4)^2} \) or \(\sqrt{85} \)

So, \(\squareJKLM \) is a rhombus by Theorem 6.20.

Since the slope of \(JK = \frac{4 - (-2)}{0 - (-7)} \) or \(\frac{6}{7} \), the slope of \(KL = \frac{2 - 4}{9 - 0} \) or \(\frac{-2}{9} \), and the product of these slopes is not \(-1\), consecutive sides \(JK \) and \(KL \) are not perpendicular. Therefore, \(\angle JK \) is not a right angle. So \(\squareJKLM \) is not a rectangle or a square.

Check Your Progress

4. Given \(J(5, 0), K(8, -11), L(-3, -14), M(-6, -3) \), determine whether parallelogram \(JKLM \) is a rhombus, a rectangle, or a square. List all that apply. Explain.
Lesson 6-5 Rhombi and Squares

Check Your Understanding

Example 1
p. 427
ALGEBRA Quadrilateral $ABCD$ is a rhombus. Find each value or measure.

1. If $m\angle BCD = 64$, find $m\angle BAC$.
2. If $AB = 2x + 3$ and $BC = x + 7$, find CD.
3. PROOF Write a two-column proof to prove that if $ABCD$ is a rhombus with diagonal DB, then $\overline{AP} \cong \overline{CP}$.

Examples 2 and 3
pp. 428–429

4. GAMES The checkerboard below is made up of 64 congruent black and red squares. Use this information to prove that the board itself is a square.

Example 4
p. 430
COORDINATE GEOMETRY Given each set of vertices, determine whether $\square QRST$ is a rhombus, a rectangle, or a square. List all that apply. Explain.

5. $Q(1, 2), R(-2, -1), S(1, -4), T(4, -1)$
6. $Q(-2, -1), R(-1, 2), S(4, 1), T(3, -2)$

Practice and Problem Solving

Example 1
p. 427
ALGEBRA Quadrilateral $ABCD$ is a rhombus. Find each value or measure.

7. If $AB = 14$, find BC.
8. If $m\angle BCD = 54$, find $m\angle BAC$.
9. If $AP = 3x - 1$ and $PC = x + 9$, find AC.
10. If $DB = 2x - 4$ and $PB = 2x - 9$, find PD.
11. If $m\angle ABC = 2x - 7$ and $m\angle BCD = 2x + 3$, find $m\angle DAB$.
12. If $m\angle DPC = 3x - 15$, find x.

Example 2
p. 428
PROOF Write a two-column proof.

13. Given: $\overline{WZ} \parallel \overline{XY}, \overline{WX} \parallel \overline{ZY}$
 $\overline{WZ} \cong \overline{ZY}$
 Prove: $WXYZ$ is a rhombus.

14. Given: $QRST$ is a parallelogram.
 $TR \cong QS$, $m\angle QPR = 90$
 Prove: $QRST$ is a square.

15. Given: $JKQP$ is a square.
 ML bisects JP and KQ.
 Prove: $JKLM$ is a parallelogram.

16. Given: $ACDH$ and $BCDF$ are parallelograms; $BF \cong AB$.
 Prove: $ABHF$ is a rhombus.
17. **ROADWAYS** Main Street and High Street intersect as shown in the diagram. Each of the crosswalks is the same length. Classify the quadrilateral formed by the crosswalks. Explain your reasoning.

18. **CONSTRUCTION** A landscaper has staked out the area for a square garden as shown. She has confirmed that each side of the quadrilateral formed by the stakes is congruent and that the diagonals are perpendicular. Is this information enough for the landscaper to be sure that the garden is a square? Explain your reasoning.

Example 4

COORDINATE GEOMETRY Given each set of vertices, determine whether \(\Box JKL M \) is a rhombus, a rectangle, or a square. List all that apply. Explain.

19. \(J(-4, -1), K(1, -1), L(4, 3), M(-1, 3) \)
20. \(J(-3, -2), K(2, -2), L(5, 2), M(0, 2) \)
21. \(J(-2, -1), K(-4, 3), L(1, 5), M(3, 1) \)
22. \(J(-1, 1), K(4, 1), L(4, 6), M(-1, 6) \)

\(ABCD\) is a rhombus. If \(PB = 12, AB = 15, \) and \(m\angle ABD = 24\), find each measure.

23. \(AP \)
24. \(CP \)
25. \(m\angle BDA \)
26. \(m\angle ACB \)

\(WXYZ\) is a square. If \(WT = 3\), find each measure.

27. \(ZX \)
28. \(XY \)
29. \(m\angle WTZ \)
30. \(m\angle WYX \)

Classify each quadrilateral.

31. \(\) 32. \(\) 33. \(\)

PROOF Write a paragraph proof.

34. Theorem 6.16
35. Theorem 6.17
36. Theorem 6.18
37. Theorem 6.19
38. Theorem 6.20

CONSTRUCTION Use diagonals to construct each figure. Justify each construction.

39. rhombus
40. square

PROOF Write a coordinate proof of each statement.

41. The diagonals of a square are perpendicular.
42. The segments joining the midpoints of the sides of a rectangle form a rhombus.
Lesson 6-5 Rhombi and Squares

Design The tile pattern below consists of regular octagons and quadrilaterals. Classify the quadrilaterals in the pattern and explain your reasoning.

![Tile Pattern](Image)

Repair The window pane shown needs to be replaced. What are the dimensions of the replacement pane?

![Window Pane](Image)

Multiple Representations In this problem, you will explore the properties of kites, which are quadrilaterals with exactly two distinct pairs of adjacent congruent sides.

a. **Geometric** Draw three kites with varying side lengths. Label one kite $ABCD$, one $PQRS$, and one $WXYZ$. Then draw the diagonals of each kite, labeling the point of intersection N for each kite.

b. **Tabular** Measure the distance from N to each vertex. Record your results in a table like the one shown.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Distance from N to Each Vertex Along Shorter Diagonal</th>
<th>Distance from N to Each Vertex Along Longer Diagonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ABCD$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$PQRS$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$WXYZ$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conjecture Make a conjecture about the diagonals of a kite.

H.O.T. Problems

46. **Find the Error** In quadrilateral $PQRS$, $\overline{PK} \cong QS$. Lola thinks that the quadrilateral is a square, and Xavier thinks that it is a rhombus. Is either of them correct? Explain your reasoning.

47. **Reasoning** Determine whether the statement is true or false. Then write the converse, inverse, and contrapositive of the statement and determine the truth value of each. Explain your reasoning.

If a quadrilateral is a square, then it is a rectangle.

48. **Challenge** The area of square $ABCD$ is 36 square units and the area of $\triangle EBF$ is 20 square units. If $EB \perp BF$ and $\overline{AE} = 2$, find the length of \overline{CF}.

49. **Open Ended** Find the vertices of a square with diagonals that are contained in the lines $y = x$ and $y = -x + 6$. Justify your reasoning.

50. **Writing in Math** Compare all of the properties of the following quadrilaterals: parallelograms, rectangles, rhombi, and squares.

Real-World Link

Mosaics are images formed using patterns of closely set stones, glass, tile, or other material. The mosaic shown above is an early Greek pebble mosaic. By 200 B.C., the Greeks used tesserae, or regularly shaped material, instead of pebbles in their mosaics.

Source: Encyclopaedia Britannica
51. JKLM is a rhombus. If CK = 8 and JK = 10, find JC.
 A 4 C 8
 B 6 D 10

52. EXTENDED RESPONSE The sides of square ABCD are extended by sides of equal length to form square WXYZ.
 a. If CY = 3 cm and the area of ABCD is 81 cm², find the area of WXYZ.
 b. If the areas of ABCD and WXYZ are 49 cm² and 169 cm² respectively, find DZ.
 c. If AB = 2CY and the area of ABCD = m square meters, find the area of WXYZ in square meters.

53. ALGEBRA What values of x and y make quadrilateral ABCD a parallelogram?
 F x = 3, y = 2
 G x = 3/2, y = –1
 H x = 2, y = 3
 J x = 3, y = –1

54. SAT/ACT What is 6 more than the product of –3 and a certain number x?
 A –3x – 6
 B –3x
 C –x
 D –3x + 6

Spiral Review

Quadrilateral ABCD is a rectangle. Find each measure if m∠1 = 18. (Lesson 6-4)

55. m∠2 56. m∠5 57. m∠6

Determine whether each quadrilateral is a parallelogram. Justify your answer. (Lesson 6-3)

58. 59. 60.

61. MEASUREMENT Monifa says that her backyard is shaped like a triangle and that the lengths of its sides are 22 feet, 23 feet, and 45 feet. Do you think these measurements are correct? Explain your reasoning. (Lesson 5-5)

62. COORDINATE GEOMETRY Identify the transformation and verify that it is a congruence transformation. (Lesson 4-7)

Skills Review

Solve each equation. (Lesson 0-5)

63. 1/2 (5x + 7x – 1) = 11.5
64. 1/2 (10x + 6x + 2) = 7
65. 1/2 (12x + 6 – 8x + 7) = 9
Trapezoids and Kites

Why?

In gymnastics, vaulting boxes made out of high compression foam are used as spotting platforms, vaulting horses, and steps. The left and right side of each section is a *trapezoid*.

Properties of Trapezoids A trapezoid is a quadrilateral with exactly one pair of parallel sides. The parallel sides are called bases. The nonparallel sides are called legs. The base angles are formed by the base and one of the legs. In trapezoid $ABCD$, $\angle A$ and $\angle B$ are one pair of base angles and $\angle C$ and $\angle D$ are the other pair.

If the legs of a trapezoid are congruent, then it is an *isosceles trapezoid*.

Theorems

6.21 If a trapezoid is isosceles, then each pair of base angles is congruent.

Example If trapezoid $FGHJ$ is isosceles, then $\angle G \cong \angle H$ and $\angle F \cong \angle J$.

6.22 If a trapezoid has one pair of congruent base angles, then it is an isosceles trapezoid.

Example If $\angle L \cong \angle M$, then trapezoid $KLMP$ is isosceles.

6.23 A trapezoid is isosceles if and only if its diagonals are congruent.

Example If trapezoid $QRST$ is isosceles, then $QS \cong RT$. Likewise, if $QS \cong RT$, then trapezoid $QRST$ is isosceles.

You will prove Theorem 6.21, Theorem 6.22, and the other part of Theorem 6.23 in Exercises 28, 29, and 30, respectively.

Proof

Part of Theorem 6.23

Given: $ABCD$ is an isosceles trapezoid.

Prove: $AC \cong BD$

- $ABCD$ is an isosceles trapezoid.
 - Given
- $DC \cong CD$
 - Reflexive Property
- $AD \cong BC$
 - Def. Isos. Trapezoid
- $\angle ADC \cong \angle BCD$
 - Base \angle of trapezoid are \cong
- $\triangle ADC \cong \triangle BCD$
 - SAS
- $AC \cong BD$
 - CPCTC
Isosceles Trapezoids
The base angles of a trapezoid are only congruent if the trapezoid is isosceles.

MUSIC The speaker shown is an isosceles trapezoid. If \(m \angle FJH = 85 \), \(FK = 8 \) inches, and \(JG = 19 \) inches, find each measure.

a. \(m \angle FGH \)

Since \(FGHJ \) is an isosceles trapezoid, \(\angle FJH \) and \(\angle GHJ \) are congruent base angles. So, \(m \angle GHJ = m \angle FJH = 85 \).

Since \(FGH \) is a trapezoid, \(FG \parallel JH \).

\[
m \angle FGH + m \angle GHJ = 180 \quad \text{Consecutive Interior Angles Theorem}
\]

\[
m \angle FGH + 85 = 180 \quad \text{Substitution}
\]

\[
m \angle FGH = 95 \quad \text{Subtract 85 from each side.}
\]

b. \(KH \)

Since \(FGHJ \) is an isosceles trapezoid, diagonals \(FH \) and \(JG \) are congruent.

\[
FH = JG \quad \text{Definition of congruent}
\]

\[
FK + KH = JG \quad \text{Segment Addition}
\]

\[
8 + KH = 19 \quad \text{Substitution}
\]

\[
KH = 11 \text{ cm} \quad \text{Subtract 8 from each side.}
\]

Check Your Progress

CAFETERIA TRAYS To save space at a square table, cafeteria trays often incorporate trapezoids into their design. If \(WXYZ \) is an isosceles trapezoid and \(m \angle YZW = 45 \), \(WV = 15 \) centimeters, and \(VY = 10 \) centimeters, find each measure.

1A. \(m \angle XWZ \)
1B. \(m \angle WXZ \)
1C. \(XZ \)
1D. \(XV \)

You can use coordinate geometry to determine whether a trapezoid is an isosceles trapezoid.

EXAMPLE 2 Isosceles Trapezoids and Coordinate Geometry

COORDINATE GEOMETRY Quadrilateral \(ABCD \) has vertices \(A(-3, 4), B(2, 5), C(3, 3), \) and \(D(-1, 0) \). Show that \(ABCD \) is a trapezoid and determine whether it is an isosceles trapezoid.

Graph and connect the vertices of \(ABCD \).

Step 1 Use the Slope Formula to compare the slopes of opposite sides \(BC \) and \(AD \) and of opposite sides \(AB \) and \(DC \). A quadrilateral is a trapezoid if exactly one pair of opposite sides are parallel.
Opposite sides BC and AD:

slope of $BC = \frac{3 - \frac{5}{3} - 2}{1 - (-3)} = -\frac{2}{1}$ or -2

slope of $AD = \frac{0 - 4}{-1 - (-3)} = \frac{4}{2} = 2$

Since the slopes of BC and AD are equal, $BC \parallel AD$.

Opposite sides AB and DC:

slope of $AB = \frac{5 - 4}{2 - (-3)} = \frac{1}{5}$

slope of $DC = \frac{0 - 3}{-1 - 3} = -\frac{3}{4}$ or $\frac{3}{4}$

Since the slope of AB and DC are not equal, $BC \nparallel AD$. Since $ABCD$ has only one pair of parallel sides, $ABCD$ is a trapezoid.

Step 2 Use the Distance Formula to compare the lengths of legs AB and DC to determine if trapezoid $ABCD$ is isosceles.

$AB = \sqrt{(-3 - 2)^2 + (4 - 5)^2}$ or $\sqrt{26}$

$DC = \sqrt{(-1 - 3)^2 + (0 - 3)^2} = \sqrt{25}$ or 5

Since $AB \neq DC$, trapezoid $ABCD$ is not isosceles.

Check Your Progress

2. Quadrilateral $QRST$ has vertices $Q(-8, -4), R(0, 8), S(6, 8)$, and $T(-6, -10)$. Show that $QRST$ is a trapezoid and determine whether $QRST$ is an isosceles trapezoid.

The **midsegment of a trapezoid** is the segment that connects the midpoints of the legs of the trapezoid. The theorem below relates the midsegment and the bases of a trapezoid.

Theorem 6.24 **Trapezoid Midsegment Theorem**

The midsegment of a trapezoid is parallel to each base and its measure is one half the sum of the lengths of the bases.

Example If BE is the midsegment of trapezoid $ACDF$, then

$AF \parallel BE$, $CD \parallel BE$, and

$BE = \frac{1}{2}(AF + CD)$.

You will prove Theorem 6.24 in Exercise 33.
GRIDDED RESPONSE In the figure, \overline{LH} is the midsegment of trapezoid $FGJK$. What is the value of x?

Read the Test Item

You are given the measure of the midsegment of an isosceles trapezoid and the measure of one of its bases. You are asked to find the measure of the other base.

Solve the Test Item

$LH = \frac{1}{2}(FG + KJ) \quad \text{Trapezoid Midsegment Theorem}$

$15 = \frac{1}{2}(x + 18.2) \quad \text{Substitution}$

$30 = x + 18.2 \quad \text{Multiply each side by 2.}$

$11.8 = x \quad \text{Subtract 18.2 from each side.}$

Grid In Your Answer

You can align the numerical answer by placing the first digit in the left answer box or by putting the last digit in the right answer box.

Do not leave blank boxes in the middle of an answer.

Fill in one bubble for each filled answer box. Do not fill more than one bubble for an answer box. Do not fill in a bubble for blank answer boxes.

Check Your Progress

3. GRIDDED RESPONSE Trapezoid $ABCD$ is shown below. If \overline{FG} is parallel to \overline{AD}, what is the x-coordinate of point G?

Properties of Kites A kite is a quadrilateral with exactly two pairs of consecutive congruent sides. Unlike a parallelogram, the opposite sides of a kite are not congruent or parallel.
You will prove Theorems 6.25 and 6.26 in Exercises 31 and 32, respectively.

You can use the theorems above, the Pythagorean Theorem, and the Polygon Interior Angles Sum Theorem to find missing measures in kites.

EXAMPLE 4

Use Properties of Kites

a. If $FGHJ$ **is a kite, find** $m\angle GFJ$.

Since a kite can only have one pair of opposite congruent angles and $\angle G \neq \angle J$, then $\angle F \cong \angle H$. So, $m\angle F = m\angle H$.

Write and solve an equation to find $m\angle F$.

$$m\angle F + m\angle G + m\angle H + m\angle J = 360$$

$$m\angle F + 128 + m\angle F + 72 = 360$$

$$2m\angle F + 200 = 360$$

$$2m\angle F = 160$$

$$m\angle F = 80$$

b. If $WXYZ$ **is a kite, find** ZY.

Since the diagonals of a kite are perpendicular, they divide $WXYZ$ into four right triangles. Use the Pythagorean Theorem to find ZY, the length of the hypotenuse of right $\triangle YPZ$.

$$PZ^2 + PY^2 = ZY^2$$

$$8^2 + 24^2 = ZY^2$$

$$640 = ZY^2$$

$$\sqrt{640} = ZY$$

$$8\sqrt{10} = ZY$$

Check Your Progress

4A. If $m\angle BAD = 38$ and $m\angle BCD = 50$, find $m\angle ADC$.

4B. If $BT = 5$ and $TC = 8$, find CD.

Personal Tutor glencoe.com
Check Your Understanding

Example 1
Find each measure.
1. \(m \angle D \)
2. \(WT \), if \(ZX = 20 \) and \(TY = 15 \)

Example 2
COORDINATE GEOMETRY
Quadrilateral \(ABCD \) has vertices \(A(-4, -1) \), \(B(-2, 3) \), \(C(3, 3) \), and \(D(5, -1) \).
3. Verify that \(ABCD \) is a trapezoid.
4. Determine whether \(ABCD \) is an isosceles trapezoid. Explain.

Example 3
SHORT RESPONSE
In the figure at the right, \(\overline{YZ} \) is the midsegment of trapezoid \(TWRV \). Determine the value of \(x \).

Example 4
If \(ABCD \) is a kite, find each measure.
6. \(AB \)
7. \(m \angle C \)

Practice and Problem Solving

Example 1
Find each measure.
8. \(m \angle K \)
9. \(m \angle Q \)
10. \(JL \), if \(KP = 4 \) and \(PM = 7 \)
11. \(PW \), if \(XZ = 18 \) and \(PY = 3 \)

Example 2
COORDINATE GEOMETRY
For each quadrilateral with the given vertices, verify that the quadrilateral is a trapezoid and determine whether the figure is an isosceles trapezoid.
12. \(A(-2, 5) \), \(B(-3, 1) \), \(C(6, 1) \), \(D(3, 5) \)
13. \(J(-4, -6) \), \(K(6, 2) \), \(L(1, 3) \), \(M(-4, -1) \)
14. \(Q(2, 5) \), \(R(-2, 1) \), \(S(-1, -6) \), \(T(9, 4) \)
15. \(W(-5, -1) \), \(X(-2, 2) \), \(Y(3, 1) \), \(Z(5, -3) \)
For trapezoid $QRTU$, V and S are midpoints of the legs.

16. If $QR = 12$ and $UT = 22$, find VS.
17. If $QR = 4$ and $UT = 16$, find VS.
18. If $VS = 9$ and $UT = 12$, find QR.
19. If $TU = 26$ and $SV = 17$, find QR.
20. If $QR = 2$ and $VS = 7$, find UT.
21. If $RQ = 5$ and $VS = 11$, find UT.

22. **DESIGN** Juana is designing a window box. She wants the end of the box to be a trapezoid with the dimensions shown. If she wants to put a shelf in the middle for the plants to rest on, how wide should she make the shelf?

23. **MUSIC** The keys of the xylophone shown form a trapezoid. If the length of the lower pitched C is 6 inches long, and the higher pitched D is 1.8 inches long, how long is the G key?

If $WXYZ$ is a kite, find each measure.

24. YZ
25. WP
26. $m\angle X$
27. $m\angle Z$

PROOF Write a paragraph proof for each theorem.

28. Theorem 6.21
29. Theorem 6.22
30. Theorem 6.23
31. Theorem 6.25
32. Theorem 6.26
33. **PROOF** Write a coordinate proof for Theorem 6.24.

34. **COORDINATE GEOMETRY** Refer to quadrilateral $ABCD$.
 a. Determine whether the figure is a trapezoid. If so, is it isosceles? Explain.
 b. Is the midsegment contained in the line with equation $y = -x + 1$? Justify your answer.
 c. Find the length of the midsegment.
ALGEBRA

PROOF Write a two-column proof.

51. **Given:** \(ABCD\) is an isosceles trapezoid.

 Prove: \(\angle DAC \cong \angle CBD\)

52. **Given:** \(WXYZ\) is a kite.

 Prove: \(WXYV\) is an isosceles trapezoid.
58. **KITES** Refer to the kite at the right. Using the properties of kites, write a two-column proof to show that \(\triangle MNR \) is congruent to \(\triangle PNR \).

59. **VENN DIAGRAM** Create a Venn diagram that incorporates all quadrilaterals, including trapezoids, isosceles trapezoids, kites, and quadrilaterals that cannot be classified as anything other than quadrilaterals. Explain.

COORDINATE GEOMETRY Determine whether each figure is a trapezoid, a parallelogram, a square, a rhombus, or a quadrilateral given the coordinates of the vertices. Choose the most specific term. Explain.

60. \((-1, 4), (2, 6), (3, 3), (0, 1)\)

61. \((-3, 4), (3, 4), (5, 3), (-5, 1)\)

62. **MULTIPLE REPRESENTATIONS** In this problem, you will explore proportions in kites.

 a. **GEOMETRIC** Draw a segment. Construct a noncongruent segment that perpendicularly bisects the first segment. Connect the endpoints of the segments to form a quadrilateral \(ABCD\). Repeat the process two times. Name the additional quadrilaterals \(PQRS\) and \(WXYZ\).

 b. **TABULAR** Copy and complete the table below.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Side</th>
<th>Length</th>
<th>Side</th>
<th>Length</th>
<th>Side</th>
<th>Length</th>
<th>Side</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ABCD)</td>
<td>(AB)</td>
<td>(BC)</td>
<td>(CD)</td>
<td>(DA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(PQRS)</td>
<td>(PQ)</td>
<td>(QR)</td>
<td>(RS)</td>
<td>(SP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(WXYZ)</td>
<td>(WX)</td>
<td>(XY)</td>
<td>(YZ)</td>
<td>(ZW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 c. **VERBAL** Make a conjecture about a quadrilateral in which the diagonals are perpendicular, exactly one diagonal is bisected, and the diagonals are not congruent.

PROOF Write a coordinate proof of each statement.

63. The diagonals of an isosceles trapezoid are congruent.

64. The median of an isosceles trapezoid is parallel to the bases.

H.O.T. Problems Use **Higher-Order Thinking Skills**

65. **FIND THE ERROR** Bedagi and Belinda are trying to determine \(m\angle A\) in kite \(ABCD\) shown. Is either of them correct? Explain.

 - **Bedagi** \(m\angle A = 45\)
 - **Belinda** \(m\angle A = 115\)

66. **CHALLENGE** If the parallel sides of a trapezoid are contained by the lines \(y = x + 4\) and \(y = x - 8\), what equation represents the line contained by the midsegment?

67. **REASONING** Is it sometimes, always, or never true that a square is also a kite? Explain.

68. **OPEN ENDED** Sketch two noncongruent trapezoids \(ABCD\) and \(FGHJ\) in which \(AC \cong FH \) and \(BD \cong GF \).

69. **WRITING IN MATH** Describe the properties a quadrilateral must possess in order for the quadrilateral to be classified as a trapezoid, an isosceles trapezoid, or a kite. Compare the properties of all three quadrilaterals.
70. **ALGEBRA** All of the items on a breakfast menu cost the same whether ordered with something else or alone. Two pancakes and one order of bacon costs $4.92. If two orders of bacon cost $3.96, what does one pancake cost?

 A $0.96 C $1.98
 B $1.47 D $2.94

71. **SHORT RESPONSE** If quadrilateral $ABCD$ is a kite, what is $m\angle C$?

72. Which figure can serve as a counterexample to the conjecture below?

 If the diagonals of a quadrilateral are congruent, then the quadrilateral is a rectangle.

 F square
 G rhombus
 H parallelogram
 J isosceles trapezoid

73. **SAT/ACT** In the figure below, what is the value of x?

 x° (\(x - 60\))^\circ

 A 60 C 180
 B 120 D 240

Spiral Review

ALGEBRA Quadrilateral $DFGH$ is a rhombus. Find each value or measure. \(\text{(Lesson 6-5)}\)

74. If $m\angle FGH = 118$, find $m\angle MHG$.

75. If $DM = 4x - 3$ and $MG = x + 6$, find DG.

76. If $DF = 10$, find FG.

77. If $HM = 12$ and $HD = 15$, find MG.

COORDINATE GEOMETRY Graph each quadrilateral with the given vertices. Determine whether the figure is a rectangle. Justify your answer using the indicated formula. \(\text{(Lesson 6-4)}\)

78. $A(4, 2), B(-4, 1), C(-3, -5), D(5, -4)$; Distance Formula

79. $J(0, 7), K(-8, 6), L(-7, 0), M(1, 1)$; Slope Formula

80. **BASEBALL** A batter hits the ball to the third baseman and begins to run toward first base. At the same time, the runner on first base runs toward second base. If the third baseman wants to throw the ball to the nearest base, to which base should he throw? Explain. \(\text{(Lesson 5-3)}\)

81. **PROOF** Write a two-column proof. \(\text{(Lesson 4-5)}\)

 Given: $\angle CMF \cong \angle EMF$, $\angle CFM \cong \angle EFM$

 Prove: $\triangle DMC \cong \triangle DME$

Skills Review

Write an expression for the slope of each segment given the coordinates and endpoints. \(\text{(Lesson 3-3)}\)

82. $(x, 4y), (-x, 4y)$

83. $(-x, 5x), (0, 6x)$

84. $(y, x), (y, y)$
Chapter Summary

Key Concepts

Angles of Polygons (Lesson 6-1)
- The sum of the measures of the interior angles of a polygon is given by the formula \(S = 180(n - 2) \).
- The sum of the measures of the exterior angles of a convex polygon is 360.

Properties of Parallelograms (Lessons 6-2 and 6-3)
- Opposite sides are congruent and parallel.
- Opposite angles are congruent.
- Consecutive angles are supplementary.
- If a parallelogram has one right angle, it has four right angles.
- Diagonals bisect each other.

Properties of Rectangles, Rhombi, Squares, and Trapezoids (Lesson 6-4 through 6-6)
- A rectangle has all the properties of a parallelogram. Diagonals are congruent and bisect each other. All four angles are right angles.
- A rhombus has all the properties of a parallelogram. All sides are congruent. Diagonals are perpendicular. Each diagonal bisects a pair of opposite angles.
- A square has all the properties of a parallelogram, a rectangle, and a rhombus.
- In an isosceles trapezoid, both pairs of base angles are congruent and the diagonals are congruent.

Key Vocabulary

- base (p. 435)
- base angle (p. 435)
- diagonal (p. 389)
- isosceles trapezoid (p. 435)
- kite (p. 438)
- legs (p. 435)
- midsegment of a trapezoid (p. 437)
- parallelogram (p. 399)
- rectangle (p. 419)
- rhombus (p. 426)
- square (p. 427)
- trapezoid (p. 435)

Vocabulary Check

State whether each sentence is true or false. If false, replace the underlined word or phrase to make a true sentence.

1. No angles in an isosceles trapezoid are congruent.
2. If a parallelogram is a rectangle, then the diagonals are congruent.
3. A midsegment of a trapezoid is a segment that connects any two nonconsecutive vertices.
4. The base of a trapezoid is one of the parallel sides.
5. The diagonals of a rhombus are perpendicular.
6. The diagonal of a trapezoid is the segment that connects the midpoints of the legs.
7. A rectangle is not always a parallelogram.
8. A quadrilateral with only one set of parallel sides is a parallelogram.
9. A rectangle that is also a rhombus is a square.
10. The leg of a trapezoid is one of the parallel sides.
Lesson-by-Lesson Review

6-1 Angles of Polygons (pp. 389–397)

Find the sum of the measures of the interior angles of each convex polygon.

11. decagon
12. 15-gon

13. **SNOWFLAKES** The snowflake decoration at the right is a regular hexagon. Find the sum of the measures of the interior angles of the hexagon.

The measure of an interior angle of a regular polygon is given. Find the number of sides in the polygon.

14. 135
15. 166.15

6-2 Parallelograms (pp. 399–407)

Use \(\square ABCD \) to find each measure.

16. \(m \angle ADC \)
17. \(AD \)
18. \(AB \)
19. \(m \angle BCD \)

ALGEBRA Find the value of each variable.

20. \(x + 4 \)
21. \(2y + 19 \)

22. **DESIGN** What type of information is needed to determine whether the shapes that make up the stained glass window below are parallelograms?

EXAMPLE 1

Find the sum of the measures of the interior angles of a convex 22-gon.

\[m = (n - 2)180 \]

Write an equation.

\[= (22 - 2)180 \]

Substitution

\[= 20 \cdot 180 \]

Subtract.

\[= 3600 \]

Multiply.

EXAMPLE 2

The measure of an interior angle of a regular polygon is 157.5. Find the number of sides in the polygon.

\[157.5n = (n - 2)180 \]

Write an equation.

\[157.5n = 180n - 360 \]

Distributive Property

\[-22.5n = -360 \]

Subtract.

\[n = 16 \]

Divide.

The polygon has 16 sides.

EXAMPLE 3

ALGEBRA If \(KLMN \) is a parallelogram, find the value of the indicated variable.

\[\overline{KN} \cong \overline{LM} \]

Opp. sides of a \(\square \) are \(\cong \).

\[KN = LM \]

Definition of congruence

\[36 = 9x \]

Substitution

\[4 = x \]

Divide.

\[\overline{NJ} \cong \overline{JL} \]

Diag. of a \(\square \) bisect each other.

\[NJ = JL \]

Definition of congruence

\[y + 15 = 3y - 7 \]

Substitution

\[-2y = -22 \]

Subtract.

\[y = 11 \]

Divide.
6-3 Tests for Parallelograms (pp. 409–417)

Determine whether each quadrilateral is a parallelogram. Justify your answer.

23.

24.

25. **PROOF** Write a two-column proof.

Given: \(\square ABCD, \overline{AE} \cong \overline{CF} \)

Prove: Quadrilateral \(EBFD \) is a parallelogram.

EXAMPLE 4

If \(TP = 4x + 2 \), \(QP = 2y - 6 \), \(PS = 5y - 12 \), and \(PR = 6x - 4 \), find \(x \) and \(y \) so that the quadrilateral is a parallelogram.

\[
TP = PR
\]
\[
4x + 2 = 6x - 4
\]
\[
-2x = -6
\]
\[
x = 3
\]

\[
QP = PS
\]
\[
2y - 6 = 5y - 12
\]
\[
-3y = -6
\]
\[
y = 2
\]

ALGEBRA Find \(x \) and \(y \) so that the quadrilateral is a parallelogram.

26.

27.

28. **PARKING** The lines of the parking space shown below are parallel. How wide is the space (in inches)?

29. If \(\angle FEG = 57 \), find \(\angle GEH \).

30. If \(\angle HGE = 13 \), find \(\angle FGE \).

31. If \(FK = 32 \) feet, find \(EG \).

32. Find \(\angle HEF + \angle EFG \).

33. If \(EF = 4x - 6 \) and \(HG = x + 3 \), find \(EF \).

6-4 Rectangles (pp. 419–425)

EXAMPLE 5

ALGEBRA Quadrilateral \(ABCD \) is a rectangle. If \(\angle ADB = 4x + 8 \) and \(\angle DBA = 6x + 12 \), find \(x \).

\(ABCD \) is a rectangle, so \(\angle ABC = 90 \). Since the opposite sides of a rectangle are parallel, and the alternate interior angles of parallel lines are congruent, \(\angle DBC \cong \angle ADB \) and \(\angle DBC = \angle ADB \).

\[
\angle DBC + \angle DBA = 90 \quad \text{Angle Addition}
\]
\[
4x + 8 + 6x + 12 = 90 \quad \text{Substitution}
\]
\[
10x + 20 = 90 \quad \text{Add.}
\]
\[
10x = 70 \quad \text{Subtract.}
\]
\[
x = 7 \quad \text{Divide.}
\]
EXAMPLE 6

The diagonals of rhombus QRST intersect at P. Use the information to find each measure or value.

a. ALGEBRA If QT = x + 7 and TS = 2x - 9, find x.

\[
\begin{align*}
QT & \equiv TS \\
QT & = TS \\
x + 7 & = 2x - 9 \\
\therefore -x & = -16 \\
x & = 16
\end{align*}
\]

b. If \(m\angle QTS = 76\), find \(m\angle TSP \).

TR bisects \(\angle QTS \). Therefore, \(m\angle PTS = \frac{1}{2} m\angle QTS \). So \(m\angle PTS = \frac{1}{2} (76) \) or 38. Since the diagonals of a rhombus are perpendicular, \(m\angle TPS = 90 \).

\[
\begin{align*}
m\angle PTS + m\angle TPS + m\angle TSP & = 180 \\
38 + 90 + m\angle TSP & = 180 \\
128 + m\angle TSP & = 180 \\
m\angle TSP & = 52
\end{align*}
\]

EXAMPLE 7

If QRST is a kite, find \(m\angle RST \).

Since \(\angle R \equiv \angle T, \angle Q \equiv \angle S \).

So, \(m\angle Q = m\angle S \).

Write and solve an equation to find \(m\angle S \).

\[
\begin{align*}
m\angle Q + m\angle R + m\angle S + m\angle T & = 360 \\
m\angle Q + 136 + m\angle S + 68 & = 360 \\
2m\angle S + 204 & = 360 \\
2m\angle S & = 156 \\
m\angle S & = 78
\end{align*}
\]
Find the sum of the measures of the interior angles of each convex polygon.

1. hexagon
2. 16-gon

3. ART Jen is making a frame to stretch a canvas over for a painting. She nailed four pieces of wood together at what she believes will be the four vertices of a square.
 a. How can she be sure that the canvas will be a square?
 b. If the canvas has the dimensions shown below, what are the missing measures?

Quadrilateral $ABCD$ is an isosceles trapezoid.

4. Which angle is congruent to $\angle C$?
5. Which side is parallel to \overline{AB}?
6. Which segment is congruent to \overline{AC}?

The measure of the interior angles of a regular polygon is given. Find the number of sides in the polygon.

7. 900
8. 1980
9. 2880
10. 5400

11. MULTIPLE CHOICE If $QRST$ is a parallelogram, what is the value of x?

 A 11
 B 12
 C 13
 D 14

If $CDFG$ is a kite, find each measure.

12. GF
13. $m\angle D$

ALGEBRA Quadrilateral $MNOP$ is a rhombus. Find each value or measure.

14. $m\angle MRN$
15. If $PR = 12$, find RN.
16. If $m\angle PON = 124$, find $m\angle POM$.

17. CONSTRUCTION The Smiths are building an addition to their house. Mrs. Smith is cutting an opening for a new window. If she measures to see that the opposite sides are congruent and that the diagonal measures are congruent, can Mrs. Smith be sure that the window opening is rectangular? Explain.

Use $\square JKLM$ to find each measure.

18. $m\angle JML$
19. JK
20. $m\angle KLM$

ALGEBRA Quadrilateral $DEFG$ is a rectangle.

21. If $DF = 2(x + 5) - 7$ and $EG = 3(x - 2)$, find EG.
22. If $m\angle EDF = 5x - 3$ and $m\angle DFG = 3x + 7$, find $m\angle EDF$.
23. If $DE = 14 + 2x$ and $GF = 4(x - 3) + 6$, find GF.

Determine whether each quadrilateral is a parallelogram. Justify your answer.

24.
25.
Apply Definitions and Properties

Many geometry problems on standardized tests require the application of definitions and properties in order to solve them. Use this section to practice applying definitions to help you solve extended-response test items.

Strategies for Applying Definitions and Properties

Step 1
Read the problem statement carefully.
• Determine what you are being asked to solve.
• Study any figures given in the problem.
• Ask yourself: What principles or properties of this figure can I apply to solve the problem?

Step 2
Solve the problem.
• Identify any definitions or geometric concepts you can use to help you find the unknowns in the problem.
• Use definitions and properties of figures to set up and solve an equation.

Step 3
• Check your answer.

EXAMPLE
Read the problem. Identify what you need to know. Then use the information in the problem to solve. Show your work.

A performing arts group is building a theater in the round for upcoming productions. The stage will be a regular octagon with a perimeter of 76 feet.

a. What length should each board be to form the sides of the stage?

b. What angle should the end of each board be cut so that they will fit together properly to form the stage? Explain.
Read the problem carefully. You are told that the boards form a regular octagon with a perimeter of 76 feet. You need to find the length of each board and the angle that they should be cut to fit together properly.

To find the length of each board, divide the perimeter by the number of boards.

\[
76 \div 8 = 9.5
\]

So, each board should be 9.5 feet, or 9 feet 6 inches, long.

Use the property of the interior angle sum of convex polygons to find the measure of an interior angle of a regular octagon. First find the sum \(S \) of the interior angles.

\[
S = (n - 2) \cdot 180
\]

\[
= (8 - 2) \cdot 180
\]

\[
= 1080
\]

So, the measure of an interior angle of a regular octagon is \(\frac{1080}{8} \), or \(135^\circ \). Since two boards are used to form each vertex of the stage, the end of each board should be cut at an angle of \(\frac{135}{2} \), or \(67.5^\circ \).

Exercises

Read each problem. Identify what you need to know. Then use the information in the problem to solve. Show your work.

1. \(\overline{RS} \) is the midsegment of trapezoid \(MNOP \).
 What is the length of \(\overline{RS} \)?

 ![Diagram of trapezoid MNOP with midsegment RS](image)

 - A 14 units
 - B 19 units
 - C 23 units
 - D 26 units

2. If \(AB \parallel DC \), find \(x \).

 ![Diagram of quadrilateral ABCD with angle 65°](image)

 - F 32.5
 - G 65
 - H 105
 - J 115

3. Use the graph shown below to answer each question.

 ![Graph with quadrilateral RSTU](image)

 a. Do the diagonals of quadrilateral \(RSTU \) bisect each other? Use the Distance Formula to verify your answer.
 b. What type of quadrilateral is \(RSTU \)? Explain using the properties and/or definitions of this type of quadrilateral.

4. What is the sum of the measures of the exterior angles of a regular octagon?
 - A 45
 - B 135
 - C 360
 - D 1080
Multiple Choice

Read each question. Then fill in the correct answer on the answer document provided by your teacher or on a sheet of paper.

1. If \(a \parallel b \), which of the following is not true?

A \(\angle 1 \approx \angle 3 \)
B \(\angle 4 \approx \angle 7 \)
C \(\angle 2 \approx \angle 5 \)
D \(\angle 8 \approx \angle 2 \)

2. Classify the triangle below according to its angle measures. Choose the most appropriate term.

\[\begin{align*}
60^\circ & \quad 60^\circ & \quad 60^\circ
\end{align*} \]

F acute
G equiangular
H obtuse
J right

3. Solve for \(x \) in parallelogram \(RSTU \).

\[\begin{align*}
(4x + 6)^\circ & \quad (6x - 54)^\circ
\end{align*} \]

\[\begin{align*}
T & \quad U \\
S & \quad R \\
A & \quad 12 \\
B & \quad 18 \\
C & \quad 25 \\
D & \quad 30
\end{align*} \]

4. What is the measure of an interior angle of a regular pentagon?

\[\begin{align*}
F & \quad 96 \\
H & \quad 120 \\
G & \quad 108 \\
J & \quad 135
\end{align*} \]

5. Quadrilateral \(ABCD \) is a rhombus. If \(m\angle BCD = 120 \), find \(m\angle DAC \).

\[\begin{align*}
A & \quad 30 \\
B & \quad 60 \\
C & \quad 90 \\
D & \quad 120
\end{align*} \]

6. What is the value of \(x \) in the figure below?

\[\begin{align*}
62^\circ & \quad (5x + 2)^\circ
\end{align*} \]

\[\begin{align*}
F & \quad 10 \\
H & \quad 14 \\
G & \quad 12 \\
J & \quad 15
\end{align*} \]

7. Which of the following statements is true?

A All rectangles are squares.
B All rhombi are squares.
C All rectangles are parallelograms.
D All parallelograms are rectangles.

Test-Taking Tip

Question 3 Use the properties of parallelograms to solve the problem. Opposite angles are congruent.
Record your answers on the answer sheet provided by your teacher or a sheet of paper.

8. GRIDDED RESPONSE The posts for Nancy’s gazebo form a regular hexagon. What is the measure of the angle formed at each corner of the gazebo?

9. What are the coordinates of point O, the fourth vertex of an isosceles trapezoid? Show your work.

10. What do you know about a parallelogram if its diagonals are perpendicular? Explain.

11. Determine whether the stated conclusion is valid based on the given information below. If not, write invalid. Explain your reasoning.

Given: If a number is divisible by 9, then the number is divisible by 3. The number 144 is divisible by 9.

Conclusion: The number 144 is divisible by 3.

12. GRIDDED RESPONSE Solve for x in the figure below. Round to the nearest tenth if necessary.

13. What are the coordinates of the circumcenter of the triangle below?

Extended Response

Record your answers on a sheet of paper. Show your work.

14. Determine whether you can prove each figure is a parallelogram. If not, tell what additional information would be needed to prove that it is a parallelogram. Explain your reasoning.

a.

b.

c.

Need Extra Help?

<table>
<thead>
<tr>
<th>If you missed Question...</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Go to Lesson or Page...</td>
<td>3-1</td>
<td>4-1</td>
<td>6-2</td>
<td>6-1</td>
<td>6-5</td>
<td>1-5</td>
<td>6-4</td>
<td>6-1</td>
<td>6-6</td>
<td>6-5</td>
<td>2-4</td>
<td>6-6</td>
<td>5-1</td>
<td>6-3</td>
</tr>
</tbody>
</table>

KY Program of Studies

Chapters 1–6 KCCT Practice 453